83 lines
2.6 KiB
C++
83 lines
2.6 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file AdaptAutoDiff.h
|
|
* @date October 22, 2014
|
|
* @author Frank Dellaert
|
|
* @brief Adaptor for Ceres style auto-differentiated functions
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <gtsam/base/VectorSpace.h>
|
|
#include <gtsam/base/OptionalJacobian.h>
|
|
#include <gtsam/3rdparty/ceres/autodiff.h>
|
|
|
|
#include <boost/static_assert.hpp>
|
|
#include <boost/type_traits/is_base_of.hpp>
|
|
|
|
namespace gtsam {
|
|
|
|
/**
|
|
* The AdaptAutoDiff class uses ceres-style autodiff to adapt a ceres-style
|
|
* Function evaluation, i.e., a function FUNCTOR that defines an operator
|
|
* template<typename T> bool operator()(const T* const, const T* const, T*
|
|
* predicted) const;
|
|
* For now only binary operators are supported.
|
|
*/
|
|
template <typename FUNCTOR, int M, int N1, int N2>
|
|
class AdaptAutoDiff {
|
|
typedef Eigen::Matrix<double, M, N1, Eigen::RowMajor> RowMajor1;
|
|
typedef Eigen::Matrix<double, M, N2, Eigen::RowMajor> RowMajor2;
|
|
|
|
typedef Eigen::Matrix<double, M, 1> VectorT;
|
|
typedef Eigen::Matrix<double, N1, 1> Vector1;
|
|
typedef Eigen::Matrix<double, N2, 1> Vector2;
|
|
|
|
FUNCTOR f;
|
|
|
|
public:
|
|
VectorT operator()(const Vector1& v1, const Vector2& v2,
|
|
OptionalJacobian<M, N1> H1 = boost::none,
|
|
OptionalJacobian<M, N2> H2 = boost::none) {
|
|
using ceres::internal::AutoDiff;
|
|
|
|
bool success;
|
|
VectorT result;
|
|
|
|
if (H1 || H2) {
|
|
// Get derivatives with AutoDiff
|
|
const double* parameters[] = {v1.data(), v2.data()};
|
|
double rowMajor1[M * N1], rowMajor2[M * N2]; // on the stack
|
|
double* jacobians[] = {rowMajor1, rowMajor2};
|
|
success = AutoDiff<FUNCTOR, double, N1, N2>::Differentiate(
|
|
f, parameters, M, result.data(), jacobians);
|
|
|
|
// Convert from row-major to columnn-major
|
|
// TODO: if this is a bottleneck (probably not!) fix Autodiff to be
|
|
// Column-Major
|
|
if (H1) *H1 = Eigen::Map<RowMajor1>(rowMajor1);
|
|
if (H2) *H2 = Eigen::Map<RowMajor2>(rowMajor2);
|
|
|
|
} else {
|
|
// Apply the mapping, to get result
|
|
success = f(v1.data(), v2.data(), result.data());
|
|
}
|
|
if (!success)
|
|
throw std::runtime_error(
|
|
"AdaptAutoDiff: function call resulted in failure");
|
|
return result;
|
|
}
|
|
};
|
|
|
|
} // namespace gtsam
|