74 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Matlab
		
	
	
			
		
		
	
	
			74 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Matlab
		
	
	
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
						|
% GTSAM Copyright 2010, Georgia Tech Research Corporation, 
 | 
						|
% Atlanta, Georgia 30332-0415
 | 
						|
% All Rights Reserved
 | 
						|
% Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
% 
 | 
						|
% See LICENSE for the license information
 | 
						|
%
 | 
						|
% @brief A structure from motion example
 | 
						|
% @author Duy-Nguyen Ta
 | 
						|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
						|
 | 
						|
import gtsam.*
 | 
						|
 | 
						|
options.triangle = false;
 | 
						|
options.nrCameras = 10;
 | 
						|
options.showImages = false;
 | 
						|
 | 
						|
[data,truth] = VisualISAMGenerateData(options);
 | 
						|
 | 
						|
measurementNoiseSigma = 1.0;
 | 
						|
pointNoiseSigma = 0.1;
 | 
						|
poseNoiseSigmas = [0.001 0.001 0.001 0.1 0.1 0.1]';
 | 
						|
 | 
						|
graph = NonlinearFactorGraph;
 | 
						|
 | 
						|
%% Add factors for all measurements
 | 
						|
measurementNoise = noiseModel.Isotropic.Sigma(2,measurementNoiseSigma);
 | 
						|
for i=1:length(data.Z)
 | 
						|
    for k=1:length(data.Z{i})
 | 
						|
        j = data.J{i}{k};
 | 
						|
        graph.add(GenericProjectionFactorCal3_S2(data.Z{i}{k}, measurementNoise, symbol('x',i), symbol('p',j), data.K));
 | 
						|
    end
 | 
						|
end
 | 
						|
 | 
						|
posePriorNoise  = noiseModel.Diagonal.Sigmas(poseNoiseSigmas);
 | 
						|
graph.add(PriorFactorPose3(symbol('x',1), truth.cameras{1}.pose, posePriorNoise));
 | 
						|
pointPriorNoise  = noiseModel.Isotropic.Sigma(3,pointNoiseSigma);
 | 
						|
graph.add(PriorFactorPoint3(symbol('p',1), truth.points{1}, pointPriorNoise));
 | 
						|
 | 
						|
%% Initial estimate
 | 
						|
initialEstimate = Values;
 | 
						|
for i=1:size(truth.cameras,2)
 | 
						|
    pose_i = truth.cameras{i}.pose;
 | 
						|
    initialEstimate.insert(symbol('x',i), pose_i);
 | 
						|
end
 | 
						|
for j=1:size(truth.points,2)
 | 
						|
    point_j = truth.points{j};
 | 
						|
    initialEstimate.insert(symbol('p',j), point_j);
 | 
						|
end
 | 
						|
 | 
						|
%% Optimization
 | 
						|
optimizer = LevenbergMarquardtOptimizer(graph, initialEstimate);
 | 
						|
for i=1:5
 | 
						|
    optimizer.iterate();
 | 
						|
end
 | 
						|
result = optimizer.values();
 | 
						|
 | 
						|
%% Marginalization
 | 
						|
marginals = Marginals(graph, result);
 | 
						|
marginals.marginalCovariance(symbol('p',1));
 | 
						|
marginals.marginalCovariance(symbol('x',1));
 | 
						|
 | 
						|
%% Check optimized results, should be equal to ground truth
 | 
						|
for i=1:size(truth.cameras,2)
 | 
						|
    pose_i = result.atPose3(symbol('x',i));
 | 
						|
    CHECK('pose_i.equals(truth.cameras{i}.pose,1e-5)',pose_i.equals(truth.cameras{i}.pose,1e-5))
 | 
						|
end
 | 
						|
 | 
						|
for j=1:size(truth.points,2)
 | 
						|
    point_j = result.atPoint3(symbol('p',j));
 | 
						|
    CHECK('point_j.equals(truth.points{j},1e-5)',norm(point_j - truth.points{j}) < 1e-5)
 | 
						|
end
 |