gtsam/gtsam/linear/HessianFactor.cpp

499 lines
18 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file HessianFactor.cpp
* @author Richard Roberts
* @date Dec 8, 2010
*/
#include <gtsam/linear/HessianFactor.h>
#include <gtsam/linear/GaussianConditional.h>
#include <gtsam/linear/GaussianFactor.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/JacobianFactor.h>
#include <gtsam/linear/linearExceptions.h>
#include <gtsam/base/cholesky.h>
#include <gtsam/base/debug.h>
#include <gtsam/base/FastMap.h>
#include <gtsam/base/Matrix.h>
#include <gtsam/base/ThreadsafeException.h>
#include <gtsam/base/timing.h>
#include <boost/foreach.hpp>
#include <boost/format.hpp>
#include <boost/make_shared.hpp>
#include <boost/tuple/tuple.hpp>
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-variable"
#endif
#include <boost/bind.hpp>
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
#include <boost/assign/list_of.hpp>
#include <boost/range/adaptor/transformed.hpp>
#include <boost/range/adaptor/map.hpp>
#include <boost/range/algorithm/copy.hpp>
#include <sstream>
#include <limits>
using namespace std;
using namespace boost::assign;
namespace br {
using namespace boost::range;
using namespace boost::adaptors;
}
namespace gtsam {
/* ************************************************************************* */
HessianFactor::HessianFactor() :
info_(cref_list_of<1>(1)) {
linearTerm().setZero();
constantTerm() = 0.0;
}
/* ************************************************************************* */
HessianFactor::HessianFactor(Key j, const Matrix& G, const Vector& g, double f) :
GaussianFactor(cref_list_of<1>(j)), info_(cref_list_of<2>(G.cols())(1)) {
if (G.rows() != G.cols() || G.rows() != g.size())
throw invalid_argument(
"Attempting to construct HessianFactor with inconsistent matrix and/or vector dimensions");
info_(0, 0) = G;
info_(0, 1) = g;
info_(1, 1)(0, 0) = f;
}
/* ************************************************************************* */
// error is 0.5*(x-mu)'*inv(Sigma)*(x-mu) = 0.5*(x'*G*x - 2*x'*G*mu + mu'*G*mu)
// where G = inv(Sigma), g = G*mu, f = mu'*G*mu = mu'*g
HessianFactor::HessianFactor(Key j, const Vector& mu, const Matrix& Sigma) :
GaussianFactor(cref_list_of<1>(j)), info_(cref_list_of<2>(Sigma.cols())(1)) {
if (Sigma.rows() != Sigma.cols() || Sigma.rows() != mu.size())
throw invalid_argument(
"Attempting to construct HessianFactor with inconsistent matrix and/or vector dimensions");
info_(0, 0) = Sigma.inverse(); // G
info_(0, 1) = info_(0, 0).selfadjointView() * mu; // g
info_(1, 1)(0, 0) = mu.dot(info_(0, 1).knownOffDiagonal().col(0)); // f
}
/* ************************************************************************* */
HessianFactor::HessianFactor(Key j1, Key j2, const Matrix& G11,
const Matrix& G12, const Vector& g1, const Matrix& G22, const Vector& g2,
double f) :
GaussianFactor(cref_list_of<2>(j1)(j2)), info_(
cref_list_of<3>(G11.cols())(G22.cols())(1)) {
info_(0, 0) = G11;
info_(0, 1) = G12;
info_(0, 2) = g1;
info_(1, 1) = G22;
info_(1, 2) = g2;
info_(2, 2)(0, 0) = f;
}
/* ************************************************************************* */
HessianFactor::HessianFactor(Key j1, Key j2, Key j3, const Matrix& G11,
const Matrix& G12, const Matrix& G13, const Vector& g1, const Matrix& G22,
const Matrix& G23, const Vector& g2, const Matrix& G33, const Vector& g3,
double f) :
GaussianFactor(cref_list_of<3>(j1)(j2)(j3)), info_(
cref_list_of<4>(G11.cols())(G22.cols())(G33.cols())(1)) {
if (G11.rows() != G11.cols() || G11.rows() != G12.rows()
|| G11.rows() != G13.rows() || G11.rows() != g1.size()
|| G22.cols() != G12.cols() || G33.cols() != G13.cols()
|| G22.cols() != g2.size() || G33.cols() != g3.size())
throw invalid_argument(
"Inconsistent matrix and/or vector dimensions in HessianFactor constructor");
info_(0, 0) = G11;
info_(0, 1) = G12;
info_(0, 2) = G13;
info_(0, 3) = g1;
info_(1, 1) = G22;
info_(1, 2) = G23;
info_(1, 3) = g2;
info_(2, 2) = G33;
info_(2, 3) = g3;
info_(3, 3)(0, 0) = f;
}
/* ************************************************************************* */
namespace {
DenseIndex _getSizeHF(const Vector& m) {
return m.size();
}
}
/* ************************************************************************* */
HessianFactor::HessianFactor(const std::vector<Key>& js,
const std::vector<Matrix>& Gs, const std::vector<Vector>& gs, double f) :
GaussianFactor(js), info_(gs | br::transformed(&_getSizeHF), true) {
// Get the number of variables
size_t variable_count = js.size();
// Verify the provided number of entries in the vectors are consistent
if (gs.size() != variable_count
|| Gs.size() != (variable_count * (variable_count + 1)) / 2)
throw invalid_argument(
"Inconsistent number of entries between js, Gs, and gs in HessianFactor constructor.\nThe number of keys provided \
in js must match the number of linear vector pieces in gs. The number of upper-diagonal blocks in Gs must be n*(n+1)/2");
// Verify the dimensions of each provided matrix are consistent
// Note: equations for calculating the indices derived from the "sum of an arithmetic sequence" formula
for (size_t i = 0; i < variable_count; ++i) {
DenseIndex block_size = gs[i].size();
// Check rows
for (size_t j = 0; j < variable_count - i; ++j) {
size_t index = i * (2 * variable_count - i + 1) / 2 + j;
if (Gs[index].rows() != block_size) {
throw invalid_argument(
"Inconsistent matrix and/or vector dimensions in HessianFactor constructor");
}
}
// Check cols
for (size_t j = 0; j <= i; ++j) {
size_t index = j * (2 * variable_count - j + 1) / 2 + (i - j);
if (Gs[index].cols() != block_size) {
throw invalid_argument(
"Inconsistent matrix and/or vector dimensions in HessianFactor constructor");
}
}
}
// Fill in the blocks
size_t index = 0;
for (size_t i = 0; i < variable_count; ++i) {
for (size_t j = i; j < variable_count; ++j) {
info_(i, j) = Gs[index++];
}
info_(i, variable_count) = gs[i];
}
info_(variable_count, variable_count)(0, 0) = f;
}
/* ************************************************************************* */
namespace {
void _FromJacobianHelper(const JacobianFactor& jf, SymmetricBlockMatrix& info) {
gttic(HessianFactor_fromJacobian);
const SharedDiagonal& jfModel = jf.get_model();
if (jfModel) {
if (jf.get_model()->isConstrained())
throw invalid_argument(
"Cannot construct HessianFactor from JacobianFactor with constrained noise model");
info.full().triangularView() =
jf.matrixObject().full().transpose()
* (jfModel->invsigmas().array() * jfModel->invsigmas().array()).matrix().asDiagonal()
* jf.matrixObject().full();
} else {
info.full().triangularView() = jf.matrixObject().full().transpose()
* jf.matrixObject().full();
}
}
}
/* ************************************************************************* */
HessianFactor::HessianFactor(const JacobianFactor& jf) :
GaussianFactor(jf), info_(
SymmetricBlockMatrix::LikeActiveViewOf(jf.matrixObject())) {
_FromJacobianHelper(jf, info_);
}
/* ************************************************************************* */
HessianFactor::HessianFactor(const GaussianFactor& gf) :
GaussianFactor(gf) {
// Copy the matrix data depending on what type of factor we're copying from
if (const JacobianFactor* jf = dynamic_cast<const JacobianFactor*>(&gf)) {
info_ = SymmetricBlockMatrix::LikeActiveViewOf(jf->matrixObject());
_FromJacobianHelper(*jf, info_);
} else if (const HessianFactor* hf = dynamic_cast<const HessianFactor*>(&gf)) {
info_ = hf->info_;
} else {
throw std::invalid_argument(
"In HessianFactor(const GaussianFactor& gf), gf is neither a JacobianFactor nor a HessianFactor");
}
}
/* ************************************************************************* */
HessianFactor::HessianFactor(const GaussianFactorGraph& factors,
boost::optional<const Scatter&> scatter) {
gttic(HessianFactor_MergeConstructor);
boost::optional<Scatter> computedScatter;
if (!scatter) {
computedScatter = Scatter(factors);
scatter = computedScatter;
}
// Allocate and copy keys
gttic(allocate);
// Allocate with dimensions for each variable plus 1 at the end for the information vector
keys_.resize(scatter->size());
FastVector<DenseIndex> dims(scatter->size() + 1);
BOOST_FOREACH(const Scatter::value_type& key_slotentry, *scatter) {
keys_[key_slotentry.second.slot] = key_slotentry.first;
dims[key_slotentry.second.slot] = key_slotentry.second.dimension;
}
dims.back() = 1;
info_ = SymmetricBlockMatrix(dims);
info_.full().triangularView().setZero();
gttoc(allocate);
// Form A' * A
gttic(update);
BOOST_FOREACH(const GaussianFactor::shared_ptr& factor, factors)
if (factor)
factor->updateHessian(keys_, &info_);
gttoc(update);
}
/* ************************************************************************* */
void HessianFactor::print(const std::string& s,
const KeyFormatter& formatter) const {
cout << s << "\n";
cout << " keys: ";
for (const_iterator key = begin(); key != end(); ++key)
cout << formatter(*key) << "(" << getDim(key) << ") ";
cout << "\n";
gtsam::print(Matrix(info_.full().selfadjointView()),
"Augmented information matrix: ");
}
/* ************************************************************************* */
bool HessianFactor::equals(const GaussianFactor& lf, double tol) const {
const HessianFactor* rhs = dynamic_cast<const HessianFactor*>(&lf);
if (!rhs || !Factor::equals(lf, tol))
return false;
return equal_with_abs_tol(augmentedInformation(), rhs->augmentedInformation(),
tol);
}
/* ************************************************************************* */
Matrix HessianFactor::augmentedInformation() const {
return info_.full().selfadjointView();
}
/* ************************************************************************* */
Matrix HessianFactor::information() const {
return info_.range(0, size(), 0, size()).selfadjointView();
}
/* ************************************************************************* */
VectorValues HessianFactor::hessianDiagonal() const {
VectorValues d;
// Loop over all variables
for (DenseIndex j = 0; j < (DenseIndex) size(); ++j) {
// Get the diagonal block, and insert its diagonal
Matrix B = info_(j, j).selfadjointView();
d.insert(keys_[j], B.diagonal());
}
return d;
}
/* ************************************************************************* */
// Raw memory access version should be called in Regular Factors only currently
void HessianFactor::hessianDiagonal(double* d) const {
throw std::runtime_error(
"HessianFactor::hessianDiagonal raw memory access is allowed for Regular Factors only");
}
/* ************************************************************************* */
map<Key, Matrix> HessianFactor::hessianBlockDiagonal() const {
map<Key, Matrix> blocks;
// Loop over all variables
for (DenseIndex j = 0; j < (DenseIndex) size(); ++j) {
// Get the diagonal block, and insert it
Matrix B = info_(j, j).selfadjointView();
blocks.insert(make_pair(keys_[j], B));
}
return blocks;
}
/* ************************************************************************* */
Matrix HessianFactor::augmentedJacobian() const {
return JacobianFactor(*this).augmentedJacobian();
}
/* ************************************************************************* */
std::pair<Matrix, Vector> HessianFactor::jacobian() const {
return JacobianFactor(*this).jacobian();
}
/* ************************************************************************* */
double HessianFactor::error(const VectorValues& c) const {
// error 0.5*(f - 2*x'*g + x'*G*x)
const double f = constantTerm();
double xtg = 0, xGx = 0;
// extract the relevant subset of the VectorValues
// NOTE may not be as efficient
const Vector x = c.vector(keys());
xtg = x.dot(linearTerm());
xGx = x.transpose() * info_.range(0, size(), 0, size()).selfadjointView() * x;
return 0.5 * (f - 2.0 * xtg + xGx);
}
/* ************************************************************************* */
void HessianFactor::updateHessian(const FastVector<Key>& infoKeys,
SymmetricBlockMatrix* info) const {
gttic(updateHessian_HessianFactor);
// Apply updates to the upper triangle
DenseIndex n = size(), N = info->nBlocks() - 1;
vector<DenseIndex> slots(n + 1);
for (DenseIndex j = 0; j <= n; ++j) {
const DenseIndex J = (j == n) ? N : Slot(infoKeys, keys_[j]);
slots[j] = J;
for (DenseIndex i = 0; i <= j; ++i) {
const DenseIndex I = slots[i]; // because i<=j, slots[i] is valid.
(*info)(I, J) += info_(i, j);
}
}
}
/* ************************************************************************* */
GaussianFactor::shared_ptr HessianFactor::negate() const {
shared_ptr result = boost::make_shared<This>(*this);
result->info_.full().triangularView() =
-result->info_.full().triangularView().nestedExpression(); // Negate the information matrix of the result
return result;
}
/* ************************************************************************* */
void HessianFactor::multiplyHessianAdd(double alpha, const VectorValues& x,
VectorValues& yvalues) const {
// Create a vector of temporary y values, corresponding to rows i
vector<Vector> y;
y.reserve(size());
for (const_iterator it = begin(); it != end(); it++)
y.push_back(zero(getDim(it)));
// Accessing the VectorValues one by one is expensive
// So we will loop over columns to access x only once per column
// And fill the above temporary y values, to be added into yvalues after
for (DenseIndex j = 0; j < (DenseIndex) size(); ++j) {
// xj is the input vector
Vector xj = x.at(keys_[j]);
DenseIndex i = 0;
for (; i < j; ++i)
y[i] += info_(i, j).knownOffDiagonal() * xj;
// blocks on the diagonal are only half
y[i] += info_(j, j).selfadjointView() * xj;
// for below diagonal, we take transpose block from upper triangular part
for (i = j + 1; i < (DenseIndex) size(); ++i)
y[i] += info_(i, j).knownOffDiagonal() * xj;
}
// copy to yvalues
for (DenseIndex i = 0; i < (DenseIndex) size(); ++i) {
bool didNotExist;
VectorValues::iterator it;
boost::tie(it, didNotExist) = yvalues.tryInsert(keys_[i], Vector());
if (didNotExist)
it->second = alpha * y[i]; // init
else
it->second += alpha * y[i]; // add
}
}
/* ************************************************************************* */
VectorValues HessianFactor::gradientAtZero() const {
VectorValues g;
size_t n = size();
for (size_t j = 0; j < n; ++j)
g.insert(keys_[j], -info_(j, n).knownOffDiagonal());
return g;
}
/* ************************************************************************* */
// Raw memory access version should be called in Regular Factors only currently
void HessianFactor::gradientAtZero(double* d) const {
throw std::runtime_error(
"HessianFactor::gradientAtZero raw memory access is allowed for Regular Factors only");
}
/* ************************************************************************* */
Vector HessianFactor::gradient(Key key, const VectorValues& x) const {
Factor::const_iterator i = find(key);
// Sum over G_ij*xj for all xj connecting to xi
Vector b = zero(x.at(key).size());
for (Factor::const_iterator j = begin(); j != end(); ++j) {
// Obtain Gij from the Hessian factor
// Hessian factor only stores an upper triangular matrix, so be careful when i>j
Matrix Gij;
if (i > j) {
Matrix Gji = info(j, i);
Gij = Gji.transpose();
} else {
Gij = info(i, j);
}
// Accumulate Gij*xj to gradf
b += Gij * x.at(*j);
}
// Subtract the linear term gi
b += -linearTerm(i);
return b;
}
/* ************************************************************************* */
std::pair<boost::shared_ptr<GaussianConditional>,
boost::shared_ptr<HessianFactor> > EliminateCholesky(
const GaussianFactorGraph& factors, const Ordering& keys) {
gttic(EliminateCholesky);
// Build joint factor
HessianFactor::shared_ptr jointFactor;
try {
jointFactor = boost::make_shared<HessianFactor>(factors,
Scatter(factors, keys));
} catch (std::invalid_argument&) {
throw InvalidDenseElimination(
"EliminateCholesky was called with a request to eliminate variables that are not\n"
"involved in the provided factors.");
}
// Do dense elimination
GaussianConditional::shared_ptr conditional;
try {
size_t numberOfKeysToEliminate = keys.size();
VerticalBlockMatrix Ab = jointFactor->info_.choleskyPartial(
numberOfKeysToEliminate);
conditional = boost::make_shared<GaussianConditional>(jointFactor->keys(),
numberOfKeysToEliminate, Ab);
// Erase the eliminated keys in the remaining factor
jointFactor->keys_.erase(jointFactor->begin(),
jointFactor->begin() + numberOfKeysToEliminate);
} catch (const CholeskyFailed& e) {
throw IndeterminantLinearSystemException(keys.front());
}
// Return result
return make_pair(conditional, jointFactor);
}
/* ************************************************************************* */
std::pair<boost::shared_ptr<GaussianConditional>,
boost::shared_ptr<GaussianFactor> > EliminatePreferCholesky(
const GaussianFactorGraph& factors, const Ordering& keys) {
gttic(EliminatePreferCholesky);
// If any JacobianFactors have constrained noise models, we have to convert
// all factors to JacobianFactors. Otherwise, we can convert all factors
// to HessianFactors. This is because QR can handle constrained noise
// models but Cholesky cannot.
if (hasConstraints(factors))
return EliminateQR(factors, keys);
else
return EliminateCholesky(factors, keys);
}
} // gtsam