gtsam/tests/testIterative.cpp

195 lines
6.5 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testIterative.cpp
* @brief Unit tests for iterative methods
* @author Frank Dellaert
**/
#include <tests/smallExample.h>
#include <gtsam/nonlinear/Ordering.h>
#include <gtsam/nonlinear/Symbol.h>
#include <gtsam/linear/GaussianSequentialSolver.h>
//#include <gtsam/linear/VectorValues.h>
//#include <gtsam/linear/SubgraphPreconditioner.h>
#include <gtsam/linear/iterative-inl.h>
//#include <gtsam/inference/FactorGraph-inl.h>
#include <CppUnitLite/TestHarness.h>
using namespace std;
using namespace gtsam;
using namespace example;
using symbol_shorthand::X; // to create pose keys
using symbol_shorthand::L; // to create landmark keys
static bool verbose = false;
/* ************************************************************************* */
TEST( Iterative, steepestDescent )
{
// Create factor graph
Ordering ord;
ord += L(1), X(1), X(2);
FactorGraph<JacobianFactor> fg = createGaussianFactorGraph(ord);
// eliminate and solve
VectorValues expected = *GaussianSequentialSolver(fg).optimize();
// Do gradient descent
VectorValues zero = VectorValues::Zero(expected); // TODO, how do we do this normally?
ConjugateGradientParameters parameters;
// parameters.verbosity_ = ConjugateGradientParameters::COMPLEXITY;
VectorValues actual = steepestDescent(fg, zero, parameters);
CHECK(assert_equal(expected,actual,1e-2));
}
/* ************************************************************************* */
TEST( Iterative, conjugateGradientDescent )
{
// // Expected solution
// Ordering ord;
// ord += L(1), X(1), X(2);
// GaussianFactorGraph fg = createGaussianFactorGraph();
// VectorValues expected = fg.optimize(ord); // destructive
//
// // create graph and get matrices
// GaussianFactorGraph fg2 = createGaussianFactorGraph();
// Matrix A;
// Vector b;
// Vector x0 = gtsam::zero(6);
// boost::tie(A, b) = fg2.matrix(ord);
// Vector expectedX = Vector_(6, -0.1, 0.1, -0.1, -0.1, 0.1, -0.2);
//
// // Do conjugate gradient descent, System version
// System Ab(A, b);
// Vector actualX = conjugateGradientDescent(Ab, x0, verbose);
// CHECK(assert_equal(expectedX,actualX,1e-9));
//
// // Do conjugate gradient descent, Matrix version
// Vector actualX2 = conjugateGradientDescent(A, b, x0, verbose);
// CHECK(assert_equal(expectedX,actualX2,1e-9));
//
// // Do conjugate gradient descent on factor graph
// VectorValues zero = createZeroDelta();
// VectorValues actual = conjugateGradientDescent(fg2, zero, verbose);
// CHECK(assert_equal(expected,actual,1e-2));
//
// // Test method
// VectorValues actual2 = fg2.conjugateGradientDescent(zero, verbose);
// CHECK(assert_equal(expected,actual2,1e-2));
}
/* ************************************************************************* */
/*TEST( Iterative, conjugateGradientDescent_hard_constraint )
{
typedef Pose2Values::Key Key;
Pose2Values config;
config.insert(1, Pose2(0.,0.,0.));
config.insert(2, Pose2(1.5,0.,0.));
Pose2Graph graph;
Matrix cov = eye(3);
graph.push_back(Pose2Graph::sharedFactor(new Pose2Factor(Key(1), Key(2), Pose2(1.,0.,0.), cov)));
graph.addHardConstraint(1, config[1]);
VectorValues zeros;
zeros.insert(X(1),zero(3));
zeros.insert(X(2),zero(3));
GaussianFactorGraph fg = graph.linearize(config);
VectorValues actual = conjugateGradientDescent(fg, zeros, true, 1e-3, 1e-5, 10);
VectorValues expected;
expected.insert(X(1), zero(3));
expected.insert(X(2), Vector_(-0.5,0.,0.));
CHECK(assert_equal(expected, actual));
}*/
/* ************************************************************************* */
TEST( Iterative, conjugateGradientDescent_soft_constraint )
{
// Pose2Values config;
// config.insert(1, Pose2(0.,0.,0.));
// config.insert(2, Pose2(1.5,0.,0.));
//
// Pose2Graph graph;
// graph.addPrior(1, Pose2(0.,0.,0.), noiseModel::Isotropic::Sigma(3, 1e-10));
// graph.addConstraint(1,2, Pose2(1.,0.,0.), noiseModel::Isotropic::Sigma(3, 1));
//
// VectorValues zeros;
// zeros.insert(X(1),zero(3));
// zeros.insert(X(2),zero(3));
//
// boost::shared_ptr<GaussianFactorGraph> fg = graph.linearize(config);
// VectorValues actual = conjugateGradientDescent(*fg, zeros, verbose, 1e-3, 1e-5, 100);
//
// VectorValues expected;
// expected.insert(X(1), zero(3));
// expected.insert(X(2), Vector_(3,-0.5,0.,0.));
// CHECK(assert_equal(expected, actual));
}
/* ************************************************************************* */
TEST( Iterative, subgraphPCG )
{
// typedef Pose2Values::Key Key;
//
// Pose2Values theta_bar;
// theta_bar.insert(1, Pose2(0.,0.,0.));
// theta_bar.insert(2, Pose2(1.5,0.,0.));
//
// Pose2Graph graph;
// graph.addPrior(1, Pose2(0.,0.,0.), noiseModel::Isotropic::Sigma(3, 1e-10));
// graph.addConstraint(1,2, Pose2(1.,0.,0.), noiseModel::Isotropic::Sigma(3, 1));
//
// // generate spanning tree and create ordering
// PredecessorMap<Key> tree = graph.findMinimumSpanningTree<Key, Pose2Factor>();
// list<Key> keys = predecessorMap2Keys(tree);
// list<Symbol> symbols;
// symbols.resize(keys.size());
// std::transform(keys.begin(), keys.end(), symbols.begin(), key2symbol<Key>);
// Ordering ordering(symbols);
//
// Key root = keys.back();
// Pose2Graph T, C;
// graph.split<Key, Pose2Factor>(tree, T, C);
//
// // build the subgraph PCG system
// boost::shared_ptr<GaussianFactorGraph> Ab1_ = T.linearize(theta_bar);
// SubgraphPreconditioner::sharedFG Ab1 = T.linearize(theta_bar);
// SubgraphPreconditioner::sharedFG Ab2 = C.linearize(theta_bar);
// SubgraphPreconditioner::sharedBayesNet Rc1 = Ab1_->eliminate_(ordering);
// SubgraphPreconditioner::sharedValues xbar = optimize_(*Rc1);
// SubgraphPreconditioner system(Ab1, Ab2, Rc1, xbar);
//
// VectorValues zeros = VectorValues::zero(*xbar);
//
// // Solve the subgraph PCG
// VectorValues ybar = conjugateGradients<SubgraphPreconditioner, VectorValues,
// Errors> (system, zeros, verbose, 1e-5, 1e-5, 100);
// VectorValues actual = system.x(ybar);
//
// VectorValues expected;
// expected.insert(X(1), zero(3));
// expected.insert(X(2), Vector_(3, -0.5, 0., 0.));
// CHECK(assert_equal(expected, actual));
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */