gtsam/doc/cholesky.lyx

171 lines
2.9 KiB
Plaintext

#LyX 1.6.7 created this file. For more info see http://www.lyx.org/
\lyxformat 345
\begin_document
\begin_header
\textclass article
\use_default_options true
\language english
\inputencoding auto
\font_roman default
\font_sans default
\font_typewriter default
\font_default_family default
\font_sc false
\font_osf false
\font_sf_scale 100
\font_tt_scale 100
\graphics default
\paperfontsize default
\use_hyperref false
\papersize default
\use_geometry false
\use_amsmath 1
\use_esint 1
\cite_engine basic
\use_bibtopic false
\paperorientation portrait
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\defskip medskip
\quotes_language english
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\author ""
\author ""
\end_header
\begin_body
\begin_layout Section
Basic solving with Cholesky
\end_layout
\begin_layout Standard
Solving a linear least-squares system:
\begin_inset Formula \[
\arg\min_{x}\left\Vert Ax-b\right\Vert ^{2}\]
\end_inset
Set derivative equal to zero:
\begin_inset Formula \begin{align*}
0 & =2A^{T}\left(Ax-b\right)\\
0 & =A^{T}Ax-A^{T}b\end{align*}
\end_inset
For comparison, with QR we do
\begin_inset Formula \begin{align*}
0 & =R^{T}Q^{T}QRx-R^{T}Qb\\
& =R^{T}Rx-R^{T}Qb\\
Rx & =Qb\\
x & =R^{-1}Qb\end{align*}
\end_inset
But with Cholesky we do
\begin_inset Formula \begin{align*}
0 & =R^{T}RR^{T}Rx-R^{T}Rb\\
& =R^{T}Rx-b\\
& =Rx-R^{-T}b\\
x & =R^{-1}R^{-T}b\end{align*}
\end_inset
\end_layout
\begin_layout Section
Frontal (rank-deficient) solving with Cholesky
\end_layout
\begin_layout Standard
To do multi-frontal elimination, we decompose into rank-deficient conditionals.
\begin_inset Formula \[
\left[\begin{array}{cccccc}
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot\\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot\\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot\end{array}\right]\to\]
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula \[
\left[\begin{array}{cc}
R^{T} & 0\\
S^{T} & C^{T}\end{array}\right]\left[\begin{array}{cc}
R & S\\
0 & C\end{array}\right]=\left[\begin{array}{cc}
F^{T}F & F^{T}G\\
G^{T}F & G^{T}G\end{array}\right]\]
\end_inset
\end_layout
\begin_layout Standard
\begin_inset space ~
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula \[
R^{T}R=F^{T}F\]
\end_inset
\end_layout
\begin_layout Standard
\begin_inset space ~
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula \begin{align*}
R^{T}S & =F^{T}G\\
S & =R^{-T}F^{T}G\end{align*}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset space ~
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula \begin{align*}
S^{T}S+C^{T}C & =G^{T}G\\
G^{T}FR^{-1}R^{-T}F^{T}G+C^{T}C & =G^{T}G\\
G^{T}QRR^{-1}R^{-T}R^{T}Q^{T}G+C^{T}C & =G^{T}G\\
\textbf{if }R\textbf{ is invertible, }G^{T}G+C^{T}C & =G^{T}G\\
C^{T}C & =0\end{align*}
\end_inset
\end_layout
\end_body
\end_document