198 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			198 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			C++
		
	
	
| /**
 | |
|  * @file testPoseRTV
 | |
|  * @author Alex Cunningham
 | |
|  */
 | |
| 
 | |
| #include <CppUnitLite/TestHarness.h>
 | |
| #include <gtsam/base/Testable.h>
 | |
| #include <gtsam/base/TestableAssertions.h>
 | |
| #include <gtsam/base/numericalDerivative.h>
 | |
| 
 | |
| #include <gtsam_unstable/dynamics/PoseRTV.h>
 | |
| 
 | |
| using namespace gtsam;
 | |
| 
 | |
| GTSAM_CONCEPT_TESTABLE_INST(PoseRTV)
 | |
| GTSAM_CONCEPT_LIE_INST(PoseRTV)
 | |
| 
 | |
| const double tol=1e-5;
 | |
| 
 | |
| Rot3 rot = Rot3::RzRyRx(0.1, 0.2, 0.3);
 | |
| Point3 pt(1.0, 2.0, 3.0);
 | |
| Velocity3 vel(0.4, 0.5, 0.6);
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( testPoseRTV, constructors ) {
 | |
|   PoseRTV state1(pt, rot, vel);
 | |
|   EXPECT(assert_equal(pt, state1.t(), tol));
 | |
|   EXPECT(assert_equal(rot, state1.R(), tol));
 | |
|   EXPECT(assert_equal(vel, state1.v(), tol));
 | |
|   EXPECT(assert_equal(Pose3(rot, pt), state1.pose(), tol));
 | |
| 
 | |
|   PoseRTV state2;
 | |
|   EXPECT(assert_equal(Point3(),  state2.t(), tol));
 | |
|   EXPECT(assert_equal(Rot3(), state2.R(), tol));
 | |
|   EXPECT(assert_equal(Velocity3(), state2.v(), tol));
 | |
|   EXPECT(assert_equal(Pose3(), state2.pose(), tol));
 | |
| 
 | |
|   PoseRTV state3(Pose3(rot, pt), vel);
 | |
|   EXPECT(assert_equal(pt,  state3.t(), tol));
 | |
|   EXPECT(assert_equal(rot, state3.R(), tol));
 | |
|   EXPECT(assert_equal(vel, state3.v(), tol));
 | |
|   EXPECT(assert_equal(Pose3(rot, pt), state3.pose(), tol));
 | |
| 
 | |
|   PoseRTV state4(Pose3(rot, pt));
 | |
|   EXPECT(assert_equal(pt,  state4.t(), tol));
 | |
|   EXPECT(assert_equal(rot, state4.R(), tol));
 | |
|   EXPECT(assert_equal(Velocity3(), state4.v(), tol));
 | |
|   EXPECT(assert_equal(Pose3(rot, pt), state4.pose(), tol));
 | |
| 
 | |
|   Vector vec_init = (Vector(9) << 0.1, 0.2, 0.3,  1.0, 2.0, 3.0,  0.4, 0.5, 0.6).finished();
 | |
|   PoseRTV state5(vec_init);
 | |
|   EXPECT(assert_equal(pt,  state5.t(), tol));
 | |
|   EXPECT(assert_equal(rot, state5.R(), tol));
 | |
|   EXPECT(assert_equal(vel, state5.v(), tol));
 | |
|   EXPECT(assert_equal(vec_init, state5.vector(), tol));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( testPoseRTV, dim ) {
 | |
|   PoseRTV state1(pt, rot, vel);
 | |
|   EXPECT_LONGS_EQUAL(9, state1.dim());
 | |
|   EXPECT_LONGS_EQUAL(9, PoseRTV::Dim());
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( testPoseRTV, equals ) {
 | |
|   PoseRTV state1, state2(pt, rot, vel), state3(state2), state4(Pose3(rot, pt));
 | |
|   EXPECT(assert_equal(state1, state1, tol));
 | |
|   EXPECT(assert_equal(state2, state3, tol));
 | |
|   EXPECT(assert_equal(state3, state2, tol));
 | |
|   EXPECT(assert_inequal(state1, state2, tol));
 | |
|   EXPECT(assert_inequal(state2, state1, tol));
 | |
|   EXPECT(assert_inequal(state2, state4, tol));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( testPoseRTV, Lie ) {
 | |
|   // origin and zero deltas
 | |
|   EXPECT(assert_equal(PoseRTV(), PoseRTV().retract(zero(9)), tol));
 | |
|   EXPECT(assert_equal(zero(9), PoseRTV().localCoordinates(PoseRTV()), tol));
 | |
| 
 | |
|   PoseRTV state1(pt, rot, vel);
 | |
|   EXPECT(assert_equal(state1, state1.retract(zero(9)), tol));
 | |
|   EXPECT(assert_equal(zero(9), state1.localCoordinates(state1), tol));
 | |
| 
 | |
|   Vector delta = (Vector(9) << 0.1, 0.1, 0.1, 0.2, 0.3, 0.4,-0.1,-0.2,-0.3).finished();
 | |
|   Rot3 rot2 = rot.retract(repeat(3, 0.1));
 | |
|   Point3 pt2 = pt + rot * Point3(0.2, 0.3, 0.4);
 | |
|   Velocity3 vel2 = vel + rot * Velocity3(-0.1,-0.2,-0.3);
 | |
|   PoseRTV state2(pt2, rot2, vel2);
 | |
|   EXPECT(assert_equal(state2, state1.retract(delta), 1e-1));
 | |
|   EXPECT(assert_equal(delta, state1.localCoordinates(state2), 1e-1));
 | |
|   EXPECT(assert_equal(-delta, state2.localCoordinates(state1), 1e-1)); // loose tolerance due to retract approximation
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( testPoseRTV, dynamics_identities ) {
 | |
|   // general dynamics should produce the same measurements as the imuPrediction function
 | |
|   PoseRTV x0, x1, x2, x3, x4;
 | |
| 
 | |
|   const double dt = 0.1;
 | |
|   Vector accel = Vector3(0.2, 0.0, 0.0), gyro = Vector3(0.0, 0.0, 0.2);
 | |
|   Vector imu01 = zero(6), imu12 = zero(6), imu23 = zero(6), imu34 = zero(6);
 | |
| 
 | |
|   x1 = x0.generalDynamics(accel, gyro, dt);
 | |
|   x2 = x1.generalDynamics(accel, gyro, dt);
 | |
|   x3 = x2.generalDynamics(accel, gyro, dt);
 | |
|   x4 = x3.generalDynamics(accel, gyro, dt);
 | |
| 
 | |
| //  EXPECT(assert_equal(imu01, x0.imuPrediction(x1, dt).first, tol));
 | |
| //  EXPECT(assert_equal(imu12, x1.imuPrediction(x2, dt).first, tol));
 | |
| //  EXPECT(assert_equal(imu23, x2.imuPrediction(x3, dt).first, tol));
 | |
| //  EXPECT(assert_equal(imu34, x3.imuPrediction(x4, dt).first, tol));
 | |
| //
 | |
| //  EXPECT(assert_equal(x1.translation(), x0.imuPrediction(x1, dt).second, tol));
 | |
| //  EXPECT(assert_equal(x2.translation(), x1.imuPrediction(x2, dt).second, tol));
 | |
| //  EXPECT(assert_equal(x3.translation(), x2.imuPrediction(x3, dt).second, tol));
 | |
| //  EXPECT(assert_equal(x4.translation(), x3.imuPrediction(x4, dt).second, tol));
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| double range_proxy(const PoseRTV& A, const PoseRTV& B) { return A.range(B); }
 | |
| TEST( testPoseRTV, range ) {
 | |
|   Point3 tA(1.0, 2.0, 3.0), tB(3.0, 2.0, 3.0);
 | |
|   PoseRTV rtvA(tA), rtvB(tB);
 | |
|   EXPECT_DOUBLES_EQUAL(0.0, rtvA.range(rtvA), tol);
 | |
|   EXPECT_DOUBLES_EQUAL(2.0, rtvA.range(rtvB), tol);
 | |
|   EXPECT_DOUBLES_EQUAL(2.0, rtvB.range(rtvA), tol);
 | |
| 
 | |
|   Matrix actH1, actH2;
 | |
|   rtvA.range(rtvB, actH1, actH2);
 | |
|   Matrix numericH1 = numericalDerivative21(range_proxy, rtvA, rtvB);
 | |
|   Matrix numericH2 = numericalDerivative22(range_proxy, rtvA, rtvB);
 | |
|   EXPECT(assert_equal(numericH1, actH1, tol));
 | |
|   EXPECT(assert_equal(numericH2, actH2, tol));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| PoseRTV transformed_from_proxy(const PoseRTV& a, const Pose3& trans) {
 | |
|   return a.transformed_from(trans);
 | |
| }
 | |
| TEST( testPoseRTV, transformed_from_1 ) {
 | |
|   Rot3 R = Rot3::rodriguez(0.1, 0.2, 0.3);
 | |
|   Point3 T(1.0, 2.0, 3.0);
 | |
|   Velocity3 V(2.0, 3.0, 4.0);
 | |
|   PoseRTV start(R, T, V);
 | |
|   Pose3 transform(Rot3::yaw(M_PI_2), Point3(1.0, 2.0, 3.0));
 | |
| 
 | |
|   Matrix actDTrans, actDGlobal;
 | |
|   PoseRTV actual = start.transformed_from(transform, actDGlobal, actDTrans);
 | |
|   PoseRTV expected(transform.compose(start.pose()), transform.rotation().rotate(V));
 | |
|   EXPECT(assert_equal(expected, actual, tol));
 | |
| 
 | |
|   Matrix numDGlobal = numericalDerivative21(transformed_from_proxy, start, transform, 1e-5); // At 1e-8, fails
 | |
|   Matrix numDTrans = numericalDerivative22(transformed_from_proxy, start, transform, 1e-8); // Sensitive to step size
 | |
|   EXPECT(assert_equal(numDGlobal, actDGlobal, tol));
 | |
|   EXPECT(assert_equal(numDTrans, actDTrans, tol)); // FIXME: still needs analytic derivative
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( testPoseRTV, transformed_from_2 ) {
 | |
|   Rot3 R;
 | |
|   Point3 T(1.0, 2.0, 3.0);
 | |
|   Velocity3 V(2.0, 3.0, 4.0);
 | |
|   PoseRTV start(R, T, V);
 | |
|   Pose3 transform(Rot3::yaw(M_PI_2), Point3(1.0, 2.0, 3.0));
 | |
| 
 | |
|   Matrix actDTrans, actDGlobal;
 | |
|   PoseRTV actual = start.transformed_from(transform, actDGlobal, actDTrans);
 | |
|   PoseRTV expected(transform.compose(start.pose()), transform.rotation().rotate(V));
 | |
|   EXPECT(assert_equal(expected, actual, tol));
 | |
| 
 | |
|   Matrix numDGlobal = numericalDerivative21(transformed_from_proxy, start, transform, 1e-5); // At 1e-8, fails
 | |
|   Matrix numDTrans = numericalDerivative22(transformed_from_proxy, start, transform, 1e-8); // Sensitive to step size
 | |
|   EXPECT(assert_equal(numDGlobal, actDGlobal, tol));
 | |
|   EXPECT(assert_equal(numDTrans, actDTrans, tol)); // FIXME: still needs analytic derivative
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(testPoseRTV, RRTMbn) {
 | |
|   EXPECT(assert_equal(Matrix::Identity(3,3), PoseRTV::RRTMbn(zero(3)), tol));
 | |
|   EXPECT(assert_equal(Matrix::Identity(3,3), PoseRTV::RRTMbn(Rot3()), tol));
 | |
|   EXPECT(assert_equal(PoseRTV::RRTMbn(Vector3(0.3, 0.2, 0.1)), PoseRTV::RRTMbn(Rot3::ypr(0.1, 0.2, 0.3)), tol));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(testPoseRTV, RRTMnb) {
 | |
|   EXPECT(assert_equal(Matrix::Identity(3,3), PoseRTV::RRTMnb(zero(3)), tol));
 | |
|   EXPECT(assert_equal(Matrix::Identity(3,3), PoseRTV::RRTMnb(Rot3()), tol));
 | |
|   EXPECT(assert_equal(PoseRTV::RRTMnb(Vector3(0.3, 0.2, 0.1)), PoseRTV::RRTMnb(Rot3::ypr(0.1, 0.2, 0.3)), tol));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
 | |
| /* ************************************************************************* */
 | |
| 
 |