gtsam/examples/Pose2SLAMExample_graph.cpp

58 lines
1.9 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Pose2SLAMExample_graph->cpp
* @brief Read graph from file and perform GraphSLAM
* @date June 3, 2012
* @author Frank Dellaert
*/
#include <gtsam/slam/dataset.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/nonlinear/Marginals.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/geometry/Pose2.h>
#include <boost/tuple/tuple.hpp>
#include <cmath>
using namespace std;
using namespace gtsam;
int main(int argc, char** argv) {
// Read File and create graph and initial estimate
// we are in build/examples, data is in examples/Data
NonlinearFactorGraph::shared_ptr graph ;
Values::shared_ptr initial;
SharedDiagonal model = noiseModel::Diagonal::Sigmas(Vector_(3, 0.05, 0.05, 5.0*M_PI/180.0));
boost::tie(graph,initial) = load2D("../../examples/Data/w100-odom.graph",model);
initial->print("Initial estimate:\n");
// Add a Gaussian prior on first poses
Pose2 priorMean(0.0, 0.0, 0.0); // prior at origin
SharedDiagonal priorNoise = noiseModel::Diagonal::Sigmas(Vector_(3, 0.01, 0.01, 0.01));
graph->push_back(PriorFactor<Pose2>(0, priorMean, priorNoise));
// Single Step Optimization using Levenberg-Marquardt
Values result = LevenbergMarquardtOptimizer(*graph, *initial).optimize();
result.print("\nFinal result:\n");
// Plot the covariance of the last pose
Marginals marginals(*graph, result);
cout.precision(2);
cout << "\nP3:\n" << marginals.marginalCovariance(99) << endl;
return 0;
}