424 lines
17 KiB
C++
424 lines
17 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file DoglegOptimizer.h
|
|
* @brief Unit tests for DoglegOptimizer
|
|
* @author Richard Roberts
|
|
*/
|
|
|
|
#include <tests/smallExample.h>
|
|
#include <gtsam/nonlinear/DoglegOptimizerImpl.h>
|
|
#include <gtsam/nonlinear/Symbol.h>
|
|
#include <gtsam/linear/JacobianFactor.h>
|
|
#include <gtsam/linear/GaussianSequentialSolver.h>
|
|
#include <gtsam/linear/GaussianBayesTree.h>
|
|
#include <gtsam/inference/BayesTree.h>
|
|
#include <gtsam/base/numericalDerivative.h>
|
|
|
|
#include <CppUnitLite/TestHarness.h>
|
|
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wunused-variable"
|
|
#include <boost/bind.hpp>
|
|
#pragma GCC diagnostic pop
|
|
#include <boost/assign/list_of.hpp> // for 'list_of()'
|
|
#include <functional>
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
|
|
// Convenience for named keys
|
|
using symbol_shorthand::X;
|
|
using symbol_shorthand::L;
|
|
|
|
/* ************************************************************************* */
|
|
double computeError(const GaussianBayesNet& gbn, const LieVector& values) {
|
|
|
|
// Convert Vector to VectorValues
|
|
VectorValues vv = *allocateVectorValues(gbn);
|
|
vv.vector() = values;
|
|
|
|
// Convert to factor graph
|
|
GaussianFactorGraph gfg(gbn);
|
|
return gfg.error(vv);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
double computeErrorBt(const BayesTree<GaussianConditional>& gbt, const LieVector& values) {
|
|
|
|
// Convert Vector to VectorValues
|
|
VectorValues vv = *allocateVectorValues(gbt);
|
|
vv.vector() = values;
|
|
|
|
// Convert to factor graph
|
|
GaussianFactorGraph gfg(gbt);
|
|
return gfg.error(vv);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(DoglegOptimizer, ComputeSteepestDescentPoint) {
|
|
|
|
// Create an arbitrary Bayes Net
|
|
GaussianBayesNet gbn;
|
|
gbn += GaussianConditional::shared_ptr(new GaussianConditional(
|
|
0, Vector_(2, 1.0,2.0), Matrix_(2,2, 3.0,4.0,0.0,6.0),
|
|
3, Matrix_(2,2, 7.0,8.0,9.0,10.0),
|
|
4, Matrix_(2,2, 11.0,12.0,13.0,14.0), ones(2)));
|
|
gbn += GaussianConditional::shared_ptr(new GaussianConditional(
|
|
1, Vector_(2, 15.0,16.0), Matrix_(2,2, 17.0,18.0,0.0,20.0),
|
|
2, Matrix_(2,2, 21.0,22.0,23.0,24.0),
|
|
4, Matrix_(2,2, 25.0,26.0,27.0,28.0), ones(2)));
|
|
gbn += GaussianConditional::shared_ptr(new GaussianConditional(
|
|
2, Vector_(2, 29.0,30.0), Matrix_(2,2, 31.0,32.0,0.0,34.0),
|
|
3, Matrix_(2,2, 35.0,36.0,37.0,38.0), ones(2)));
|
|
gbn += GaussianConditional::shared_ptr(new GaussianConditional(
|
|
3, Vector_(2, 39.0,40.0), Matrix_(2,2, 41.0,42.0,0.0,44.0),
|
|
4, Matrix_(2,2, 45.0,46.0,47.0,48.0), ones(2)));
|
|
gbn += GaussianConditional::shared_ptr(new GaussianConditional(
|
|
4, Vector_(2, 49.0,50.0), Matrix_(2,2, 51.0,52.0,0.0,54.0), ones(2)));
|
|
|
|
// Compute the Hessian numerically
|
|
Matrix hessian = numericalHessian(
|
|
boost::function<double(const LieVector&)>(boost::bind(&computeError, gbn, _1)),
|
|
LieVector(VectorValues::Zero(*allocateVectorValues(gbn)).vector()));
|
|
|
|
// Compute the gradient numerically
|
|
VectorValues gradientValues = *allocateVectorValues(gbn);
|
|
Vector gradient = numericalGradient(
|
|
boost::function<double(const LieVector&)>(boost::bind(&computeError, gbn, _1)),
|
|
LieVector(VectorValues::Zero(gradientValues).vector()));
|
|
gradientValues.vector() = gradient;
|
|
|
|
// Compute the gradient using dense matrices
|
|
Matrix augmentedHessian = GaussianFactorGraph(gbn).augmentedHessian();
|
|
LONGS_EQUAL(11, augmentedHessian.cols());
|
|
VectorValues denseMatrixGradient = *allocateVectorValues(gbn);
|
|
denseMatrixGradient.vector() = -augmentedHessian.col(10).segment(0,10);
|
|
EXPECT(assert_equal(gradientValues, denseMatrixGradient, 1e-5));
|
|
|
|
// Compute the steepest descent point
|
|
double step = -gradient.squaredNorm() / (gradient.transpose() * hessian * gradient)(0);
|
|
VectorValues expected = gradientValues; scal(step, expected);
|
|
|
|
// Compute the steepest descent point with the dogleg function
|
|
VectorValues actual = optimizeGradientSearch(gbn);
|
|
|
|
// Check that points agree
|
|
EXPECT(assert_equal(expected, actual, 1e-5));
|
|
|
|
// Check that point causes a decrease in error
|
|
double origError = GaussianFactorGraph(gbn).error(VectorValues::Zero(*allocateVectorValues(gbn)));
|
|
double newError = GaussianFactorGraph(gbn).error(actual);
|
|
EXPECT(newError < origError);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(DoglegOptimizer, BT_BN_equivalency) {
|
|
|
|
// Create an arbitrary Bayes Tree
|
|
BayesTree<GaussianConditional> bt;
|
|
bt.insert(BayesTree<GaussianConditional>::sharedClique(new BayesTree<GaussianConditional>::Clique(
|
|
GaussianConditional::shared_ptr(new GaussianConditional(
|
|
boost::assign::pair_list_of
|
|
(2, Matrix_(6,2,
|
|
31.0,32.0,
|
|
0.0,34.0,
|
|
0.0,0.0,
|
|
0.0,0.0,
|
|
0.0,0.0,
|
|
0.0,0.0))
|
|
(3, Matrix_(6,2,
|
|
35.0,36.0,
|
|
37.0,38.0,
|
|
41.0,42.0,
|
|
0.0,44.0,
|
|
0.0,0.0,
|
|
0.0,0.0))
|
|
(4, Matrix_(6,2,
|
|
0.0,0.0,
|
|
0.0,0.0,
|
|
45.0,46.0,
|
|
47.0,48.0,
|
|
51.0,52.0,
|
|
0.0,54.0)),
|
|
3, Vector_(6, 29.0,30.0,39.0,40.0,49.0,50.0), ones(6))))));
|
|
bt.insert(BayesTree<GaussianConditional>::sharedClique(new BayesTree<GaussianConditional>::Clique(
|
|
GaussianConditional::shared_ptr(new GaussianConditional(
|
|
boost::assign::pair_list_of
|
|
(0, Matrix_(4,2,
|
|
3.0,4.0,
|
|
0.0,6.0,
|
|
0.0,0.0,
|
|
0.0,0.0))
|
|
(1, Matrix_(4,2,
|
|
0.0,0.0,
|
|
0.0,0.0,
|
|
17.0,18.0,
|
|
0.0,20.0))
|
|
(2, Matrix_(4,2,
|
|
0.0,0.0,
|
|
0.0,0.0,
|
|
21.0,22.0,
|
|
23.0,24.0))
|
|
(3, Matrix_(4,2,
|
|
7.0,8.0,
|
|
9.0,10.0,
|
|
0.0,0.0,
|
|
0.0,0.0))
|
|
(4, Matrix_(4,2,
|
|
11.0,12.0,
|
|
13.0,14.0,
|
|
25.0,26.0,
|
|
27.0,28.0)),
|
|
2, Vector_(4, 1.0,2.0,15.0,16.0), ones(4))))));
|
|
|
|
// Create an arbitrary Bayes Net
|
|
GaussianBayesNet gbn;
|
|
gbn += GaussianConditional::shared_ptr(new GaussianConditional(
|
|
0, Vector_(2, 1.0,2.0), Matrix_(2,2, 3.0,4.0,0.0,6.0),
|
|
3, Matrix_(2,2, 7.0,8.0,9.0,10.0),
|
|
4, Matrix_(2,2, 11.0,12.0,13.0,14.0), ones(2)));
|
|
gbn += GaussianConditional::shared_ptr(new GaussianConditional(
|
|
1, Vector_(2, 15.0,16.0), Matrix_(2,2, 17.0,18.0,0.0,20.0),
|
|
2, Matrix_(2,2, 21.0,22.0,23.0,24.0),
|
|
4, Matrix_(2,2, 25.0,26.0,27.0,28.0), ones(2)));
|
|
gbn += GaussianConditional::shared_ptr(new GaussianConditional(
|
|
2, Vector_(2, 29.0,30.0), Matrix_(2,2, 31.0,32.0,0.0,34.0),
|
|
3, Matrix_(2,2, 35.0,36.0,37.0,38.0), ones(2)));
|
|
gbn += GaussianConditional::shared_ptr(new GaussianConditional(
|
|
3, Vector_(2, 39.0,40.0), Matrix_(2,2, 41.0,42.0,0.0,44.0),
|
|
4, Matrix_(2,2, 45.0,46.0,47.0,48.0), ones(2)));
|
|
gbn += GaussianConditional::shared_ptr(new GaussianConditional(
|
|
4, Vector_(2, 49.0,50.0), Matrix_(2,2, 51.0,52.0,0.0,54.0), ones(2)));
|
|
|
|
GaussianFactorGraph expected(gbn);
|
|
GaussianFactorGraph actual(bt);
|
|
|
|
EXPECT(assert_equal(expected.augmentedHessian(), actual.augmentedHessian()));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(DoglegOptimizer, ComputeSteepestDescentPointBT) {
|
|
|
|
// Create an arbitrary Bayes Tree
|
|
BayesTree<GaussianConditional> bt;
|
|
bt.insert(BayesTree<GaussianConditional>::sharedClique(new BayesTree<GaussianConditional>::Clique(
|
|
GaussianConditional::shared_ptr(new GaussianConditional(
|
|
boost::assign::pair_list_of
|
|
(2, Matrix_(6,2,
|
|
31.0,32.0,
|
|
0.0,34.0,
|
|
0.0,0.0,
|
|
0.0,0.0,
|
|
0.0,0.0,
|
|
0.0,0.0))
|
|
(3, Matrix_(6,2,
|
|
35.0,36.0,
|
|
37.0,38.0,
|
|
41.0,42.0,
|
|
0.0,44.0,
|
|
0.0,0.0,
|
|
0.0,0.0))
|
|
(4, Matrix_(6,2,
|
|
0.0,0.0,
|
|
0.0,0.0,
|
|
45.0,46.0,
|
|
47.0,48.0,
|
|
51.0,52.0,
|
|
0.0,54.0)),
|
|
3, Vector_(6, 29.0,30.0,39.0,40.0,49.0,50.0), ones(6))))));
|
|
bt.insert(BayesTree<GaussianConditional>::sharedClique(new BayesTree<GaussianConditional>::Clique(
|
|
GaussianConditional::shared_ptr(new GaussianConditional(
|
|
boost::assign::pair_list_of
|
|
(0, Matrix_(4,2,
|
|
3.0,4.0,
|
|
0.0,6.0,
|
|
0.0,0.0,
|
|
0.0,0.0))
|
|
(1, Matrix_(4,2,
|
|
0.0,0.0,
|
|
0.0,0.0,
|
|
17.0,18.0,
|
|
0.0,20.0))
|
|
(2, Matrix_(4,2,
|
|
0.0,0.0,
|
|
0.0,0.0,
|
|
21.0,22.0,
|
|
23.0,24.0))
|
|
(3, Matrix_(4,2,
|
|
7.0,8.0,
|
|
9.0,10.0,
|
|
0.0,0.0,
|
|
0.0,0.0))
|
|
(4, Matrix_(4,2,
|
|
11.0,12.0,
|
|
13.0,14.0,
|
|
25.0,26.0,
|
|
27.0,28.0)),
|
|
2, Vector_(4, 1.0,2.0,15.0,16.0), ones(4))))));
|
|
|
|
// Compute the Hessian numerically
|
|
Matrix hessian = numericalHessian(
|
|
boost::function<double(const LieVector&)>(boost::bind(&computeErrorBt, bt, _1)),
|
|
LieVector(VectorValues::Zero(*allocateVectorValues(bt)).vector()));
|
|
|
|
// Compute the gradient numerically
|
|
VectorValues gradientValues = *allocateVectorValues(bt);
|
|
Vector gradient = numericalGradient(
|
|
boost::function<double(const LieVector&)>(boost::bind(&computeErrorBt, bt, _1)),
|
|
LieVector(VectorValues::Zero(gradientValues).vector()));
|
|
gradientValues.vector() = gradient;
|
|
|
|
// Compute the gradient using dense matrices
|
|
Matrix augmentedHessian = GaussianFactorGraph(bt).augmentedHessian();
|
|
LONGS_EQUAL(11, augmentedHessian.cols());
|
|
VectorValues denseMatrixGradient = *allocateVectorValues(bt);
|
|
denseMatrixGradient.vector() = -augmentedHessian.col(10).segment(0,10);
|
|
EXPECT(assert_equal(gradientValues, denseMatrixGradient, 1e-5));
|
|
|
|
// Compute the steepest descent point
|
|
double step = -gradient.squaredNorm() / (gradient.transpose() * hessian * gradient)(0);
|
|
VectorValues expected = gradientValues; scal(step, expected);
|
|
|
|
// Known steepest descent point from Bayes' net version
|
|
VectorValues expectedFromBN(5,2);
|
|
expectedFromBN[0] = Vector_(2, 0.000129034, 0.000688183);
|
|
expectedFromBN[1] = Vector_(2, 0.0109679, 0.0253767);
|
|
expectedFromBN[2] = Vector_(2, 0.0680441, 0.114496);
|
|
expectedFromBN[3] = Vector_(2, 0.16125, 0.241294);
|
|
expectedFromBN[4] = Vector_(2, 0.300134, 0.423233);
|
|
|
|
// Compute the steepest descent point with the dogleg function
|
|
VectorValues actual = optimizeGradientSearch(bt);
|
|
|
|
// Check that points agree
|
|
EXPECT(assert_equal(expected, actual, 1e-5));
|
|
EXPECT(assert_equal(expectedFromBN, actual, 1e-5));
|
|
|
|
// Check that point causes a decrease in error
|
|
double origError = GaussianFactorGraph(bt).error(VectorValues::Zero(*allocateVectorValues(bt)));
|
|
double newError = GaussianFactorGraph(bt).error(actual);
|
|
EXPECT(newError < origError);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(DoglegOptimizer, ComputeBlend) {
|
|
// Create an arbitrary Bayes Net
|
|
GaussianBayesNet gbn;
|
|
gbn += GaussianConditional::shared_ptr(new GaussianConditional(
|
|
0, Vector_(2, 1.0,2.0), Matrix_(2,2, 3.0,4.0,0.0,6.0),
|
|
3, Matrix_(2,2, 7.0,8.0,9.0,10.0),
|
|
4, Matrix_(2,2, 11.0,12.0,13.0,14.0), ones(2)));
|
|
gbn += GaussianConditional::shared_ptr(new GaussianConditional(
|
|
1, Vector_(2, 15.0,16.0), Matrix_(2,2, 17.0,18.0,0.0,20.0),
|
|
2, Matrix_(2,2, 21.0,22.0,23.0,24.0),
|
|
4, Matrix_(2,2, 25.0,26.0,27.0,28.0), ones(2)));
|
|
gbn += GaussianConditional::shared_ptr(new GaussianConditional(
|
|
2, Vector_(2, 29.0,30.0), Matrix_(2,2, 31.0,32.0,0.0,34.0),
|
|
3, Matrix_(2,2, 35.0,36.0,37.0,38.0), ones(2)));
|
|
gbn += GaussianConditional::shared_ptr(new GaussianConditional(
|
|
3, Vector_(2, 39.0,40.0), Matrix_(2,2, 41.0,42.0,0.0,44.0),
|
|
4, Matrix_(2,2, 45.0,46.0,47.0,48.0), ones(2)));
|
|
gbn += GaussianConditional::shared_ptr(new GaussianConditional(
|
|
4, Vector_(2, 49.0,50.0), Matrix_(2,2, 51.0,52.0,0.0,54.0), ones(2)));
|
|
|
|
// Compute steepest descent point
|
|
VectorValues xu = optimizeGradientSearch(gbn);
|
|
|
|
// Compute Newton's method point
|
|
VectorValues xn = optimize(gbn);
|
|
|
|
// The Newton's method point should be more "adventurous", i.e. larger, than the steepest descent point
|
|
EXPECT(xu.vector().norm() < xn.vector().norm());
|
|
|
|
// Compute blend
|
|
double Delta = 1.5;
|
|
VectorValues xb = DoglegOptimizerImpl::ComputeBlend(Delta, xu, xn);
|
|
DOUBLES_EQUAL(Delta, xb.vector().norm(), 1e-10);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(DoglegOptimizer, ComputeDoglegPoint) {
|
|
// Create an arbitrary Bayes Net
|
|
GaussianBayesNet gbn;
|
|
gbn += GaussianConditional::shared_ptr(new GaussianConditional(
|
|
0, Vector_(2, 1.0,2.0), Matrix_(2,2, 3.0,4.0,0.0,6.0),
|
|
3, Matrix_(2,2, 7.0,8.0,9.0,10.0),
|
|
4, Matrix_(2,2, 11.0,12.0,13.0,14.0), ones(2)));
|
|
gbn += GaussianConditional::shared_ptr(new GaussianConditional(
|
|
1, Vector_(2, 15.0,16.0), Matrix_(2,2, 17.0,18.0,0.0,20.0),
|
|
2, Matrix_(2,2, 21.0,22.0,23.0,24.0),
|
|
4, Matrix_(2,2, 25.0,26.0,27.0,28.0), ones(2)));
|
|
gbn += GaussianConditional::shared_ptr(new GaussianConditional(
|
|
2, Vector_(2, 29.0,30.0), Matrix_(2,2, 31.0,32.0,0.0,34.0),
|
|
3, Matrix_(2,2, 35.0,36.0,37.0,38.0), ones(2)));
|
|
gbn += GaussianConditional::shared_ptr(new GaussianConditional(
|
|
3, Vector_(2, 39.0,40.0), Matrix_(2,2, 41.0,42.0,0.0,44.0),
|
|
4, Matrix_(2,2, 45.0,46.0,47.0,48.0), ones(2)));
|
|
gbn += GaussianConditional::shared_ptr(new GaussianConditional(
|
|
4, Vector_(2, 49.0,50.0), Matrix_(2,2, 51.0,52.0,0.0,54.0), ones(2)));
|
|
|
|
// Compute dogleg point for different deltas
|
|
|
|
double Delta1 = 0.5; // Less than steepest descent
|
|
VectorValues actual1 = DoglegOptimizerImpl::ComputeDoglegPoint(Delta1, optimizeGradientSearch(gbn), optimize(gbn));
|
|
DOUBLES_EQUAL(Delta1, actual1.vector().norm(), 1e-5);
|
|
|
|
double Delta2 = 1.5; // Between steepest descent and Newton's method
|
|
VectorValues expected2 = DoglegOptimizerImpl::ComputeBlend(Delta2, optimizeGradientSearch(gbn), optimize(gbn));
|
|
VectorValues actual2 = DoglegOptimizerImpl::ComputeDoglegPoint(Delta2, optimizeGradientSearch(gbn), optimize(gbn));
|
|
DOUBLES_EQUAL(Delta2, actual2.vector().norm(), 1e-5);
|
|
EXPECT(assert_equal(expected2, actual2));
|
|
|
|
double Delta3 = 5.0; // Larger than Newton's method point
|
|
VectorValues expected3 = optimize(gbn);
|
|
VectorValues actual3 = DoglegOptimizerImpl::ComputeDoglegPoint(Delta3, optimizeGradientSearch(gbn), optimize(gbn));
|
|
EXPECT(assert_equal(expected3, actual3));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(DoglegOptimizer, Iterate) {
|
|
// really non-linear factor graph
|
|
boost::shared_ptr<example::Graph> fg(new example::Graph(
|
|
example::createReallyNonlinearFactorGraph()));
|
|
|
|
// config far from minimum
|
|
Point2 x0(3,0);
|
|
boost::shared_ptr<Values> config(new Values);
|
|
config->insert(X(1), x0);
|
|
|
|
// ordering
|
|
boost::shared_ptr<Ordering> ord(new Ordering());
|
|
ord->push_back(X(1));
|
|
|
|
double Delta = 1.0;
|
|
for(size_t it=0; it<10; ++it) {
|
|
GaussianSequentialSolver solver(*fg->linearize(*config, *ord));
|
|
GaussianBayesNet gbn = *solver.eliminate();
|
|
// Iterate assumes that linear error = nonlinear error at the linearization point, and this should be true
|
|
double nonlinearError = fg->error(*config);
|
|
double linearError = GaussianFactorGraph(gbn).error(VectorValues::Zero(*allocateVectorValues(gbn)));
|
|
DOUBLES_EQUAL(nonlinearError, linearError, 1e-5);
|
|
// cout << "it " << it << ", Delta = " << Delta << ", error = " << fg->error(*config) << endl;
|
|
DoglegOptimizerImpl::IterationResult result = DoglegOptimizerImpl::Iterate(Delta, DoglegOptimizerImpl::SEARCH_EACH_ITERATION, gbn, *fg, *config, *ord, fg->error(*config));
|
|
Delta = result.Delta;
|
|
EXPECT(result.f_error < fg->error(*config)); // Check that error decreases
|
|
Values newConfig(config->retract(result.dx_d, *ord));
|
|
(*config) = newConfig;
|
|
DOUBLES_EQUAL(fg->error(*config), result.f_error, 1e-5); // Check that error is correctly filled in
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
|
|
/* ************************************************************************* */
|