gtsam/python/gtsam_examples/ImuFactorExample.py

115 lines
4.1 KiB
Python

"""
A script validating the ImuFactor prediction and inference.
"""
import math
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import gtsam
from gtsam_utils import plotPose3
class ImuFactorExample(object):
@staticmethod
def defaultParams(g):
"""Create default parameters with Z *up* and realistic noise parameters"""
params = gtsam.PreintegrationParams.MakeSharedU(g)
kGyroSigma = math.radians(0.5) / 60 # 0.5 degree ARW
kAccelSigma = 0.1 / 60 # 10 cm VRW
params.gyroscopeCovariance = kGyroSigma ** 2 * np.identity(3, np.float)
params.accelerometerCovariance = kAccelSigma ** 2 * np.identity(3, np.float)
params.integrationCovariance = 0.0000001 ** 2 * np.identity(3, np.float)
return params
def __init__(self):
# setup interactive plotting
plt.ion()
# Setup loop scenario
# Forward velocity 2m/s
# Pitch up with angular velocity 6 degree/sec (negative in FLU)
v = 2
w = math.radians(30)
W = np.array([0, -w, 0])
V = np.array([v, 0, 0])
self.scenario = gtsam.ConstantTwistScenario(W, V)
self.dt = 0.25
self.realTimeFactor = 10.0
# Calculate time to do 1 loop
self.radius = v / w
self.timeForOneLoop = 2 * math.pi / w
self.labels = list('xyz')
self.colors = list('rgb')
# Create runner
dt = 0.1
self.g = 10 # simple gravity constant
self.params = self.defaultParams(self.g)
self.runner = gtsam.ScenarioRunner(gtsam.ScenarioPointer(self.scenario), self.params, dt)
self.estimatedBias = gtsam.ConstantBias()
def plot(self, t, measuredOmega, measuredAcc):
# plot angular velocity
omega_b = self.scenario.omega_b(t)
plt.figure(1)
for i, (label, color) in enumerate(zip(self.labels, self.colors)):
plt.subplot(3, 1, i + 1)
plt.scatter(t, omega_b[i], color='k', marker='.')
plt.scatter(t, measuredOmega[i], color=color, marker='.')
plt.xlabel(label)
# plot acceleration in nav
plt.figure(2)
acceleration_n = self.scenario.acceleration_n(t)
for i, (label, color) in enumerate(zip(self.labels, self.colors)):
plt.subplot(3, 1, i + 1)
plt.scatter(t, acceleration_n[i], color=color, marker='.')
plt.xlabel(label)
# plot acceleration in body
plt.figure(3)
acceleration_b = self.scenario.acceleration_b(t)
for i, (label, color) in enumerate(zip(self.labels, self.colors)):
plt.subplot(3, 1, i + 1)
plt.scatter(t, acceleration_b[i], color=color, marker='.')
plt.xlabel(label)
# plot ground truth pose, as well as prediction from integrated IMU measurements
actualPose = self.scenario.pose(t)
plotPose3(4, actualPose, 1.0)
pim = self.runner.integrate(t, self.estimatedBias, False)
predictedNavState = self.runner.predict(pim, self.estimatedBias)
plotPose3(4, predictedNavState.pose(), 1.0)
ax = plt.gca()
ax.set_xlim3d(-self.radius, self.radius)
ax.set_ylim3d(-self.radius, self.radius)
ax.set_zlim3d(0, self.radius * 2)
# plot actual specific force, as well as corrupted
plt.figure(5)
actual = self.runner.actualSpecificForce(t)
for i, (label, color) in enumerate(zip(self.labels, self.colors)):
plt.subplot(3, 1, i + 1)
plt.scatter(t, actual[i], color='k', marker='.')
plt.scatter(t, measuredAcc[i], color=color, marker='.')
plt.xlabel(label)
plt.pause(self.dt / self.realTimeFactor)
def run(self):
# simulate the loop up to the top
for t in np.arange(0, self.timeForOneLoop, self.dt):
measuredOmega = self.runner.measuredAngularVelocity(t)
measuredAcc = self.runner.measuredSpecificForce(t)
self.plot(t, measuredOmega, measuredAcc)
plt.ioff()
plt.show()
if __name__ == '__main__':
ImuFactorExample().run()