125 lines
4.3 KiB
C++
125 lines
4.3 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file testSubgraphSolver.cpp
|
|
* @brief Unit tests for SubgraphSolver
|
|
* @author Yong-Dian Jian
|
|
**/
|
|
|
|
#include <gtsam/linear/SubgraphSolver.h>
|
|
|
|
#include <tests/smallExample.h>
|
|
#include <gtsam/linear/GaussianBayesNet.h>
|
|
#include <gtsam/linear/iterative.h>
|
|
#include <gtsam/linear/GaussianFactorGraph.h>
|
|
#include <gtsam/linear/SubgraphBuilder.h>
|
|
#include <gtsam/inference/Symbol.h>
|
|
#include <gtsam/inference/Ordering.h>
|
|
#include <gtsam/base/numericalDerivative.h>
|
|
|
|
#include <CppUnitLite/TestHarness.h>
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
|
|
static size_t N = 3;
|
|
static SubgraphSolverParameters kParameters;
|
|
static auto kOrdering = example::planarOrdering(N);
|
|
|
|
/* ************************************************************************* */
|
|
/** unnormalized error */
|
|
static double error(const GaussianFactorGraph& fg, const VectorValues& x) {
|
|
double total_error = 0.;
|
|
for(const GaussianFactor::shared_ptr& factor: fg)
|
|
total_error += factor->error(x);
|
|
return total_error;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( SubgraphSolver, Parameters )
|
|
{
|
|
LONGS_EQUAL(SubgraphSolverParameters::SILENT, kParameters.verbosity());
|
|
LONGS_EQUAL(500, kParameters.maxIterations());
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( SubgraphSolver, splitFactorGraph )
|
|
{
|
|
// Build a planar graph
|
|
const auto [Ab, xtrue] = example::planarGraph(N); // A*x-b
|
|
|
|
SubgraphBuilderParameters params;
|
|
params.augmentationFactor = 0.0;
|
|
SubgraphBuilder builder(params);
|
|
auto subgraph = builder(Ab);
|
|
EXPECT_LONGS_EQUAL(9, subgraph.size());
|
|
|
|
const auto [Ab1, Ab2] = splitFactorGraph(Ab, subgraph);
|
|
EXPECT_LONGS_EQUAL(9, Ab1.size());
|
|
EXPECT_LONGS_EQUAL(13, Ab2.size());
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( SubgraphSolver, constructor1 )
|
|
{
|
|
// Build a planar graph
|
|
const auto [Ab, xtrue] = example::planarGraph(N); // A*x-b
|
|
|
|
// The first constructor just takes a factor graph (and kParameters)
|
|
// and it will split the graph into A1 and A2, where A1 is a spanning tree
|
|
SubgraphSolver solver(Ab, kParameters, kOrdering);
|
|
VectorValues optimized = solver.optimize(); // does PCG optimization
|
|
DOUBLES_EQUAL(0.0, error(Ab, optimized), 1e-5);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( SubgraphSolver, constructor2 )
|
|
{
|
|
// Build a planar graph
|
|
size_t N = 3;
|
|
const auto [Ab, xtrue] = example::planarGraph(N); // A*x-b
|
|
|
|
// Get the spanning tree, A1*x-b1 and A2*x-b2
|
|
const auto [Ab1, Ab2] = example::splitOffPlanarTree(N, Ab);
|
|
|
|
// The second constructor takes two factor graphs, so the caller can specify
|
|
// the preconditioner (Ab1) and the constraints that are left out (Ab2)
|
|
SubgraphSolver solver(Ab1, Ab2, kParameters, kOrdering);
|
|
VectorValues optimized = solver.optimize();
|
|
DOUBLES_EQUAL(0.0, error(Ab, optimized), 1e-5);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( SubgraphSolver, constructor3 )
|
|
{
|
|
// Build a planar graph
|
|
size_t N = 3;
|
|
const auto [Ab, xtrue] = example::planarGraph(N); // A*x-b
|
|
|
|
// Get the spanning tree and corresponding kOrdering
|
|
// A1*x-b1 and A2*x-b2
|
|
const auto [Ab1, Ab2] = example::splitOffPlanarTree(N, Ab);
|
|
|
|
// The caller solves |A1*x-b1|^2 == |R1*x-c1|^2, where R1 is square UT
|
|
auto Rc1 = *Ab1.eliminateSequential();
|
|
|
|
// The third constructor allows the caller to pass an already solved preconditioner Rc1_
|
|
// as a Bayes net, in addition to the "loop closing constraints" Ab2, as before
|
|
SubgraphSolver solver(Rc1, Ab2, kParameters);
|
|
VectorValues optimized = solver.optimize();
|
|
DOUBLES_EQUAL(0.0, error(Ab, optimized), 1e-5);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
|
|
/* ************************************************************************* */
|