gtsam/tests/testGncOptimizer.cpp

951 lines
36 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testGncOptimizer.cpp
* @brief Unit tests for GncOptimizer class
* @author Jingnan Shi
* @author Luca Carlone
* @author Frank Dellaert
*
* Implementation of the paper: Yang, Antonante, Tzoumas, Carlone, "Graduated
* Non-Convexity for Robust Spatial Perception: From Non-Minimal Solvers to
* Global Outlier Rejection", ICRA/RAL, 2020. (arxiv version:
* https://arxiv.org/pdf/1909.08605.pdf)
*
* See also:
* Antonante, Tzoumas, Yang, Carlone, "Outlier-Robust Estimation: Hardness,
* Minimally-Tuned Algorithms, and Applications", arxiv:
* https://arxiv.org/pdf/2007.15109.pdf, 2020.
*/
#include <CppUnitLite/TestHarness.h>
#include <gtsam/nonlinear/GncOptimizer.h>
#include <gtsam/nonlinear/LinearContainerFactor.h>
#include <gtsam/slam/dataset.h>
#include <tests/smallExample.h>
#include <gtsam/sam/BearingFactor.h>
#include <gtsam/geometry/Pose2.h>
using namespace std;
using namespace gtsam;
using symbol_shorthand::L;
using symbol_shorthand::X;
static double tol = 1e-7;
/* ************************************************************************* */
TEST(GncOptimizer, gncParamsConstructor) {
// check params are correctly parsed
LevenbergMarquardtParams lmParams;
GncParams<LevenbergMarquardtParams> gncParams1(lmParams);
CHECK(lmParams.equals(gncParams1.baseOptimizerParams));
// check also default constructor
GncParams<LevenbergMarquardtParams> gncParams1b;
CHECK(lmParams.equals(gncParams1b.baseOptimizerParams));
// and check params become different if we change lmParams
lmParams.setVerbosity("DELTA");
CHECK(!lmParams.equals(gncParams1.baseOptimizerParams));
// and same for GN
GaussNewtonParams gnParams;
GncParams<GaussNewtonParams> gncParams2(gnParams);
CHECK(gnParams.equals(gncParams2.baseOptimizerParams));
// check default constructor
GncParams<GaussNewtonParams> gncParams2b;
CHECK(gnParams.equals(gncParams2b.baseOptimizerParams));
// change something at the gncParams level
GncParams<GaussNewtonParams> gncParams2c(gncParams2b);
gncParams2c.setLossType(GncLossType::GM);
CHECK(!gncParams2c.equals(gncParams2b.baseOptimizerParams));
}
/* ************************************************************************* */
TEST(GncOptimizer, gncConstructor) {
// has to have Gaussian noise models !
auto fg = example::createReallyNonlinearFactorGraph(); // just a unary factor
// on a 2D point
Point2 p0(3, 3);
Values initial;
initial.insert(X(1), p0);
GncParams<LevenbergMarquardtParams> gncParams;
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial,
gncParams);
CHECK(gnc.getFactors().equals(fg));
CHECK(gnc.getState().equals(initial));
CHECK(gnc.getParams().equals(gncParams));
auto gnc2 = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial,
gncParams);
// check the equal works
CHECK(gnc.equals(gnc2));
}
/* ************************************************************************* */
TEST(GncOptimizer, solverParameterParsing) {
// has to have Gaussian noise models !
auto fg = example::createReallyNonlinearFactorGraph(); // just a unary factor
// on a 2D point
Point2 p0(3, 3);
Values initial;
initial.insert(X(1), p0);
LevenbergMarquardtParams lmParams;
lmParams.setMaxIterations(0); // forces not to perform optimization
GncParams<LevenbergMarquardtParams> gncParams(lmParams);
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial,
gncParams);
Values result = gnc.optimize();
// check that LM did not perform optimization and result is the same as the initial guess
DOUBLES_EQUAL(fg.error(initial), fg.error(result), tol);
// also check the params:
DOUBLES_EQUAL(0.0, gncParams.baseOptimizerParams.maxIterations, tol);
}
/* ************************************************************************* */
TEST(GncOptimizer, gncConstructorWithRobustGraphAsInput) {
auto fg = example::sharedNonRobustFactorGraphWithOutliers();
// same graph with robust noise model
auto fg_robust = example::sharedRobustFactorGraphWithOutliers();
Point2 p0(3, 3);
Values initial;
initial.insert(X(1), p0);
GncParams<LevenbergMarquardtParams> gncParams;
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg_robust,
initial,
gncParams);
// make sure that when parsing the graph is transformed into one without
// robust loss
CHECK(fg.equals(gnc.getFactors()));
}
/* ************************************************************************* */
TEST(GncOptimizer, initializeMu) {
auto fg = example::createReallyNonlinearFactorGraph();
Point2 p0(3, 3);
Values initial;
initial.insert(X(1), p0);
// testing GM mu initialization
GncParams<LevenbergMarquardtParams> gncParams;
gncParams.setLossType(GncLossType::GM);
auto gnc_gm = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial,
gncParams);
gnc_gm.setInlierCostThresholds(1.0);
// according to rmk 5 in the gnc paper: m0 = 2 rmax^2 / barcSq
// (barcSq=1 in this example)
EXPECT_DOUBLES_EQUAL(gnc_gm.initializeMu(), 2 * 198.999, 1e-3);
// testing TLS mu initialization
gncParams.setLossType(GncLossType::TLS);
auto gnc_tls = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial,
gncParams);
gnc_tls.setInlierCostThresholds(1.0);
// according to rmk 5 in the gnc paper: m0 = barcSq / (2 * rmax^2 - barcSq)
// (barcSq=1 in this example)
EXPECT_DOUBLES_EQUAL(gnc_tls.initializeMu(), 1 / (2 * 198.999 - 1), 1e-3);
}
/* ************************************************************************* */
TEST(GncOptimizer, updateMuGM) {
// has to have Gaussian noise models !
auto fg = example::createReallyNonlinearFactorGraph();
Point2 p0(3, 3);
Values initial;
initial.insert(X(1), p0);
GncParams<LevenbergMarquardtParams> gncParams;
gncParams.setLossType(GncLossType::GM);
gncParams.setMuStep(1.4);
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial,
gncParams);
double mu = 5.0;
EXPECT_DOUBLES_EQUAL(gnc.updateMu(mu), mu / 1.4, tol);
// check it correctly saturates to 1 for GM
mu = 1.2;
EXPECT_DOUBLES_EQUAL(gnc.updateMu(mu), 1.0, tol);
}
/* ************************************************************************* */
TEST(GncOptimizer, updateMuTLS) {
// has to have Gaussian noise models !
auto fg = example::createReallyNonlinearFactorGraph();
Point2 p0(3, 3);
Values initial;
initial.insert(X(1), p0);
GncParams<LevenbergMarquardtParams> gncParams;
gncParams.setMuStep(1.4);
gncParams.setLossType(GncLossType::TLS);
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial,
gncParams);
double mu = 5.0;
EXPECT_DOUBLES_EQUAL(gnc.updateMu(mu), mu * 1.4, tol);
}
/* ************************************************************************* */
TEST(GncOptimizer, checkMuConvergence) {
// has to have Gaussian noise models !
auto fg = example::createReallyNonlinearFactorGraph();
Point2 p0(3, 3);
Values initial;
initial.insert(X(1), p0);
{
GncParams<LevenbergMarquardtParams> gncParams;
gncParams.setLossType(GncLossType::GM);
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial,
gncParams);
double mu = 1.0;
CHECK(gnc.checkMuConvergence(mu));
}
{
GncParams<LevenbergMarquardtParams> gncParams;
gncParams.setLossType(
GncLossType::TLS);
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial,
gncParams);
double mu = 1.0;
CHECK(!gnc.checkMuConvergence(mu)); //always false for TLS
}
}
/* ************************************************************************* */
TEST(GncOptimizer, checkCostConvergence) {
// has to have Gaussian noise models !
auto fg = example::createReallyNonlinearFactorGraph();
Point2 p0(3, 3);
Values initial;
initial.insert(X(1), p0);
{
GncParams<LevenbergMarquardtParams> gncParams;
gncParams.setRelativeCostTol(0.49);
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial,
gncParams);
double prev_cost = 1.0;
double cost = 0.5;
// relative cost reduction = 0.5 > 0.49, hence checkCostConvergence = false
CHECK(!gnc.checkCostConvergence(cost, prev_cost));
}
{
GncParams<LevenbergMarquardtParams> gncParams;
gncParams.setRelativeCostTol(0.51);
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial,
gncParams);
double prev_cost = 1.0;
double cost = 0.5;
// relative cost reduction = 0.5 < 0.51, hence checkCostConvergence = true
CHECK(gnc.checkCostConvergence(cost, prev_cost));
}
}
/* ************************************************************************* */
TEST(GncOptimizer, checkWeightsConvergence) {
// has to have Gaussian noise models !
auto fg = example::createReallyNonlinearFactorGraph();
Point2 p0(3, 3);
Values initial;
initial.insert(X(1), p0);
{
GncParams<LevenbergMarquardtParams> gncParams;
gncParams.setLossType(GncLossType::GM);
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial,
gncParams);
Vector weights = Vector::Ones(fg.size());
CHECK(!gnc.checkWeightsConvergence(weights)); //always false for GM
}
{
GncParams<LevenbergMarquardtParams> gncParams;
gncParams.setLossType(
GncLossType::TLS);
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial,
gncParams);
Vector weights = Vector::Ones(fg.size());
// weights are binary, so checkWeightsConvergence = true
CHECK(gnc.checkWeightsConvergence(weights));
}
{
GncParams<LevenbergMarquardtParams> gncParams;
gncParams.setLossType(
GncLossType::TLS);
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial,
gncParams);
Vector weights = Vector::Ones(fg.size());
weights[0] = 0.9; // more than weightsTol = 1e-4 from 1, hence checkWeightsConvergence = false
CHECK(!gnc.checkWeightsConvergence(weights));
}
{
GncParams<LevenbergMarquardtParams> gncParams;
gncParams.setLossType(
GncLossType::TLS);
gncParams.setWeightsTol(0.1);
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial,
gncParams);
Vector weights = Vector::Ones(fg.size());
weights[0] = 0.9; // exactly weightsTol = 0.1 from 1, hence checkWeightsConvergence = true
CHECK(gnc.checkWeightsConvergence(weights));
}
}
/* ************************************************************************* */
TEST(GncOptimizer, checkConvergenceTLS) {
// has to have Gaussian noise models !
auto fg = example::createReallyNonlinearFactorGraph();
Point2 p0(3, 3);
Values initial;
initial.insert(X(1), p0);
GncParams<LevenbergMarquardtParams> gncParams;
gncParams.setRelativeCostTol(1e-5);
gncParams.setLossType(GncLossType::TLS);
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial,
gncParams);
CHECK(gnc.checkCostConvergence(1.0, 1.0));
CHECK(!gnc.checkCostConvergence(1.0, 2.0));
}
/* ************************************************************************* */
TEST(GncOptimizer, calculateWeightsGM) {
auto fg = example::sharedNonRobustFactorGraphWithOutliers();
Point2 p0(0, 0);
Values initial;
initial.insert(X(1), p0);
// we have 4 factors, 3 with zero errors (inliers), 1 with error 50 = 0.5 *
// 1/sigma^2 || [1;0] - [0;0] ||^2 (outlier)
Vector weights_expected = Vector::Zero(4);
weights_expected[0] = 1.0; // zero error
weights_expected[1] = 1.0; // zero error
weights_expected[2] = 1.0; // zero error
weights_expected[3] = std::pow(1.0 / (50.0 + 1.0), 2); // outlier, error = 50
GaussNewtonParams gnParams;
GncParams<GaussNewtonParams> gncParams(gnParams);
gncParams.setLossType(GncLossType::GM);
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(fg, initial, gncParams);
gnc.setInlierCostThresholds(1.0);
double mu = 1.0;
Vector weights_actual = gnc.calculateWeights(initial, mu);
CHECK(assert_equal(weights_expected, weights_actual, tol));
mu = 2.0;
double barcSq = 5.0;
weights_expected[3] = std::pow(mu * barcSq / (50.0 + mu * barcSq), 2); // outlier, error = 50
auto gnc2 = GncOptimizer<GncParams<GaussNewtonParams>>(fg, initial,
gncParams);
gnc2.setInlierCostThresholds(barcSq);
weights_actual = gnc2.calculateWeights(initial, mu);
CHECK(assert_equal(weights_expected, weights_actual, tol));
}
/* ************************************************************************* */
TEST(GncOptimizer, calculateWeightsTLS) {
auto fg = example::sharedNonRobustFactorGraphWithOutliers();
Point2 p0(0, 0);
Values initial;
initial.insert(X(1), p0);
// we have 4 factors, 3 with zero errors (inliers), 1 with error
Vector weights_expected = Vector::Zero(4);
weights_expected[0] = 1.0; // zero error
weights_expected[1] = 1.0; // zero error
weights_expected[2] = 1.0; // zero error
weights_expected[3] = 0; // outliers
GaussNewtonParams gnParams;
GncParams<GaussNewtonParams> gncParams(gnParams);
gncParams.setLossType(GncLossType::TLS);
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(fg, initial, gncParams);
double mu = 1.0;
Vector weights_actual = gnc.calculateWeights(initial, mu);
CHECK(assert_equal(weights_expected, weights_actual, tol));
}
/* ************************************************************************* */
TEST(GncOptimizer, calculateWeightsTLS2) {
// create values
Point2 x_val(0.0, 0.0);
Point2 x_prior(1.0, 0.0);
Values initial;
initial.insert(X(1), x_val);
// create very simple factor graph with a single factor 0.5 * 1/sigma^2 * || x - [1;0] ||^2
double sigma = 1;
SharedDiagonal noise = noiseModel::Diagonal::Sigmas(Vector2(sigma, sigma));
NonlinearFactorGraph nfg;
nfg.add(PriorFactor<Point2>(X(1), x_prior, noise));
// cost of the factor:
DOUBLES_EQUAL(0.5 * 1 / (sigma * sigma), nfg.error(initial), tol);
// check the TLS weights are correct: CASE 1: residual below barcsq
{
// expected:
Vector weights_expected = Vector::Zero(1);
weights_expected[0] = 1.0; // inlier
// actual:
GaussNewtonParams gnParams;
GncParams<GaussNewtonParams> gncParams(gnParams);
gncParams.setLossType(GncLossType::TLS);
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(nfg, initial,
gncParams);
gnc.setInlierCostThresholds(0.51); // if inlier threshold is slightly larger than 0.5, then measurement is inlier
double mu = 1e6;
Vector weights_actual = gnc.calculateWeights(initial, mu);
CHECK(assert_equal(weights_expected, weights_actual, tol));
}
// check the TLS weights are correct: CASE 2: residual above barcsq
{
// expected:
Vector weights_expected = Vector::Zero(1);
weights_expected[0] = 0.0; // outlier
// actual:
GaussNewtonParams gnParams;
GncParams<GaussNewtonParams> gncParams(gnParams);
gncParams.setLossType(GncLossType::TLS);
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(nfg, initial,
gncParams);
gnc.setInlierCostThresholds(0.49); // if inlier threshold is slightly below 0.5, then measurement is outlier
double mu = 1e6; // very large mu recovers original TLS cost
Vector weights_actual = gnc.calculateWeights(initial, mu);
CHECK(assert_equal(weights_expected, weights_actual, tol));
}
// check the TLS weights are correct: CASE 2: residual at barcsq
{
// expected:
Vector weights_expected = Vector::Zero(1);
weights_expected[0] = 0.5; // undecided
// actual:
GaussNewtonParams gnParams;
GncParams<GaussNewtonParams> gncParams(gnParams);
gncParams.setLossType(GncLossType::TLS);
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(nfg, initial,
gncParams);
gnc.setInlierCostThresholds(0.5); // if inlier threshold is slightly below 0.5, then measurement is outlier
double mu = 1e6; // very large mu recovers original TLS cost
Vector weights_actual = gnc.calculateWeights(initial, mu);
CHECK(assert_equal(weights_expected, weights_actual, 1e-5));
}
}
/* ************************************************************************* */
TEST(GncOptimizer, makeWeightedGraph) {
// create original factor
double sigma1 = 0.1;
NonlinearFactorGraph nfg = example::nonlinearFactorGraphWithGivenSigma(
sigma1);
// create expected
double sigma2 = 10;
NonlinearFactorGraph expected = example::nonlinearFactorGraphWithGivenSigma(
sigma2);
// create weights
Vector weights = Vector::Ones(1); // original info:1/0.1^2 = 100. New info: 1/10^2 = 0.01. Ratio is 10-4
weights[0] = 1e-4;
// create actual
Point2 p0(3, 3);
Values initial;
initial.insert(X(1), p0);
LevenbergMarquardtParams lmParams;
GncParams<LevenbergMarquardtParams> gncParams(lmParams);
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(nfg, initial,
gncParams);
NonlinearFactorGraph actual = gnc.makeWeightedGraph(weights);
// check it's all good
CHECK(assert_equal(expected, actual));
}
/* ************************************************************************* */
TEST(GncOptimizer, optimizeSimple) {
auto fg = example::createReallyNonlinearFactorGraph();
Point2 p0(3, 3);
Values initial;
initial.insert(X(1), p0);
LevenbergMarquardtParams lmParams;
GncParams<LevenbergMarquardtParams> gncParams(lmParams);
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial,
gncParams);
Values actual = gnc.optimize();
DOUBLES_EQUAL(0, fg.error(actual), tol);
}
/* ************************************************************************* */
TEST(GncOptimizer, optimize) {
auto fg = example::sharedNonRobustFactorGraphWithOutliers();
Point2 p0(1, 0);
Values initial;
initial.insert(X(1), p0);
// try with nonrobust cost function and standard GN
GaussNewtonParams gnParams;
GaussNewtonOptimizer gn(fg, initial, gnParams);
Values gn_results = gn.optimize();
// converges to incorrect point due to lack of robustness to an outlier, ideal
// solution is Point2(0,0)
CHECK(assert_equal(Point2(0.25, 0.0), gn_results.at<Point2>(X(1)), 1e-3));
// try with robust loss function and standard GN
auto fg_robust = example::sharedRobustFactorGraphWithOutliers(); // same as fg, but with
// factors wrapped in
// Geman McClure losses
GaussNewtonOptimizer gn2(fg_robust, initial, gnParams);
Values gn2_results = gn2.optimize();
// converges to incorrect point, this time due to the nonconvexity of the loss
CHECK(assert_equal(Point2(0.999706, 0.0), gn2_results.at<Point2>(X(1)), 1e-3));
// .. but graduated nonconvexity ensures both robustness and convergence in
// the face of nonconvexity
GncParams<GaussNewtonParams> gncParams(gnParams);
// gncParams.setVerbosityGNC(GncParams<GaussNewtonParams>::Verbosity::SUMMARY);
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(fg, initial, gncParams);
Values gnc_result = gnc.optimize();
CHECK(assert_equal(Point2(0.0, 0.0), gnc_result.at<Point2>(X(1)), 1e-3));
}
/* ************************************************************************* */
TEST(GncOptimizer, optimizeWithKnownInliers) {
auto fg = example::sharedNonRobustFactorGraphWithOutliers();
Point2 p0(1, 0);
Values initial;
initial.insert(X(1), p0);
GncParams<GaussNewtonParams>::IndexVector knownInliers;
knownInliers.push_back(0);
knownInliers.push_back(1);
knownInliers.push_back(2);
// nonconvexity with known inliers
{
GncParams<GaussNewtonParams> gncParams;
gncParams.setKnownInliers(knownInliers);
gncParams.setLossType(GncLossType::GM);
//gncParams.setVerbosityGNC(GncParams<GaussNewtonParams>::Verbosity::SUMMARY);
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(fg, initial,
gncParams);
gnc.setInlierCostThresholds(1.0);
Values gnc_result = gnc.optimize();
CHECK(assert_equal(Point2(0.0, 0.0), gnc_result.at<Point2>(X(1)), 1e-3));
// check weights were actually fixed:
Vector finalWeights = gnc.getWeights();
DOUBLES_EQUAL(1.0, finalWeights[0], tol);
DOUBLES_EQUAL(1.0, finalWeights[1], tol);
DOUBLES_EQUAL(1.0, finalWeights[2], tol);
}
{
GncParams<GaussNewtonParams> gncParams;
gncParams.setKnownInliers(knownInliers);
gncParams.setLossType(GncLossType::TLS);
// gncParams.setVerbosityGNC(GncParams<GaussNewtonParams>::Verbosity::SUMMARY);
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(fg, initial,
gncParams);
Values gnc_result = gnc.optimize();
CHECK(assert_equal(Point2(0.0, 0.0), gnc_result.at<Point2>(X(1)), 1e-3));
// check weights were actually fixed:
Vector finalWeights = gnc.getWeights();
DOUBLES_EQUAL(1.0, finalWeights[0], tol);
DOUBLES_EQUAL(1.0, finalWeights[1], tol);
DOUBLES_EQUAL(1.0, finalWeights[2], tol);
DOUBLES_EQUAL(0.0, finalWeights[3], tol);
}
{
// if we set the threshold large, they are all inliers
GncParams<GaussNewtonParams> gncParams;
gncParams.setKnownInliers(knownInliers);
gncParams.setLossType(GncLossType::TLS);
//gncParams.setVerbosityGNC(GncParams<GaussNewtonParams>::Verbosity::VALUES);
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(fg, initial,
gncParams);
gnc.setInlierCostThresholds(100.0);
Values gnc_result = gnc.optimize();
CHECK(assert_equal(Point2(0.25, 0.0), gnc_result.at<Point2>(X(1)), 1e-3));
// check weights were actually fixed:
Vector finalWeights = gnc.getWeights();
DOUBLES_EQUAL(1.0, finalWeights[0], tol);
DOUBLES_EQUAL(1.0, finalWeights[1], tol);
DOUBLES_EQUAL(1.0, finalWeights[2], tol);
DOUBLES_EQUAL(1.0, finalWeights[3], tol);
}
}
/* ************************************************************************* */
TEST(GncOptimizer, chi2inv) {
DOUBLES_EQUAL(8.807468393511950, Chi2inv(0.997, 1), tol); // from MATLAB: chi2inv(0.997, 1) = 8.807468393511950
DOUBLES_EQUAL(13.931422665512077, Chi2inv(0.997, 3), tol); // from MATLAB: chi2inv(0.997, 3) = 13.931422665512077
}
/* ************************************************************************* */
TEST(GncOptimizer, barcsq) {
auto fg = example::sharedNonRobustFactorGraphWithOutliers();
Point2 p0(1, 0);
Values initial;
initial.insert(X(1), p0);
GncParams<GaussNewtonParams>::IndexVector knownInliers;
knownInliers.push_back(0);
knownInliers.push_back(1);
knownInliers.push_back(2);
GncParams<GaussNewtonParams> gncParams;
gncParams.setKnownInliers(knownInliers);
gncParams.setLossType(GncLossType::GM);
//gncParams.setVerbosityGNC(GncParams<GaussNewtonParams>::Verbosity::SUMMARY);
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(fg, initial,
gncParams);
// expected: chi2inv(0.99, 2)/2
CHECK(assert_equal(4.605170185988091 * Vector::Ones(fg.size()), gnc.getInlierCostThresholds(), 1e-3));
}
/* ************************************************************************* */
TEST(GncOptimizer, barcsq_heterogeneousFactors) {
NonlinearFactorGraph fg;
// specify noise model, otherwise it segfault if we leave default noise model
SharedNoiseModel model3D(noiseModel::Isotropic::Sigma(3, 0.5));
fg.add( PriorFactor<Pose2>( 0, Pose2(0.0, 0.0, 0.0) , model3D )); // size 3
SharedNoiseModel model2D(noiseModel::Isotropic::Sigma(2, 0.5));
fg.add( PriorFactor<Point2>( 1, Point2(0.0,0.0), model2D )); // size 2
SharedNoiseModel model1D(noiseModel::Isotropic::Sigma(1, 0.5));
fg.add( BearingFactor<Pose2, Point2>( 0, 1, 1.0, model1D) ); // size 1
Values initial;
initial.insert(0, Pose2(0.0, 0.0, 0.0));
initial.insert(1, Point2(0.0,0.0));
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(fg, initial);
CHECK(assert_equal(Vector3(5.672433365072185, 4.605170185988091, 3.317448300510607),
gnc.getInlierCostThresholds(), 1e-3));
// extra test:
// fg.add( PriorFactor<Pose2>( 0, Pose2(0.0, 0.0, 0.0) )); // works if we add model3D as noise model
// std::cout << "fg[3]->dim() " << fg[3]->dim() << std::endl; // this segfaults?
}
/* ************************************************************************* */
TEST(GncOptimizer, setInlierCostThresholds) {
auto fg = example::sharedNonRobustFactorGraphWithOutliers();
Point2 p0(1, 0);
Values initial;
initial.insert(X(1), p0);
GncParams<GaussNewtonParams>::IndexVector knownInliers;
knownInliers.push_back(0);
knownInliers.push_back(1);
knownInliers.push_back(2);
{
GncParams<GaussNewtonParams> gncParams;
gncParams.setKnownInliers(knownInliers);
gncParams.setLossType(GncLossType::GM);
//gncParams.setVerbosityGNC(GncParams<GaussNewtonParams>::Verbosity::SUMMARY);
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(fg, initial,
gncParams);
gnc.setInlierCostThresholds(2.0);
Values gnc_result = gnc.optimize();
CHECK(assert_equal(Point2(0.0, 0.0), gnc_result.at<Point2>(X(1)), 1e-3));
// check weights were actually fixed:
Vector finalWeights = gnc.getWeights();
DOUBLES_EQUAL(1.0, finalWeights[0], tol);
DOUBLES_EQUAL(1.0, finalWeights[1], tol);
DOUBLES_EQUAL(1.0, finalWeights[2], tol);
CHECK(assert_equal(2.0 * Vector::Ones(fg.size()), gnc.getInlierCostThresholds(), 1e-3));
}
{
GncParams<GaussNewtonParams> gncParams;
gncParams.setKnownInliers(knownInliers);
gncParams.setLossType(GncLossType::GM);
//gncParams.setVerbosityGNC(GncParams<GaussNewtonParams>::Verbosity::SUMMARY);
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(fg, initial,
gncParams);
gnc.setInlierCostThresholds(2.0 * Vector::Ones(fg.size()));
Values gnc_result = gnc.optimize();
CHECK(assert_equal(Point2(0.0, 0.0), gnc_result.at<Point2>(X(1)), 1e-3));
// check weights were actually fixed:
Vector finalWeights = gnc.getWeights();
DOUBLES_EQUAL(1.0, finalWeights[0], tol);
DOUBLES_EQUAL(1.0, finalWeights[1], tol);
DOUBLES_EQUAL(1.0, finalWeights[2], tol);
CHECK(assert_equal(2.0 * Vector::Ones(fg.size()), gnc.getInlierCostThresholds(), 1e-3));
}
}
/* ************************************************************************* */
TEST(GncOptimizer, optimizeSmallPoseGraph) {
/// load small pose graph
const string filename = findExampleDataFile("w100.graph");
const auto [graph, initial] = load2D(filename);
// Add a Gaussian prior on first poses
Pose2 priorMean(0.0, 0.0, 0.0); // prior at origin
SharedDiagonal priorNoise = noiseModel::Diagonal::Sigmas(
Vector3(0.01, 0.01, 0.01));
graph->addPrior(0, priorMean, priorNoise);
/// get expected values by optimizing outlier-free graph
Values expected = LevenbergMarquardtOptimizer(*graph, *initial).optimize();
// add a few outliers
SharedDiagonal betweenNoise = noiseModel::Diagonal::Sigmas(
Vector3(0.1, 0.1, 0.01));
graph->push_back(BetweenFactor<Pose2>(90, 50, Pose2(), betweenNoise)); // some arbitrary and incorrect between factor
/// get expected values by optimizing outlier-free graph
Values expectedWithOutliers = LevenbergMarquardtOptimizer(*graph, *initial)
.optimize();
// as expected, the following test fails due to the presence of an outlier!
// CHECK(assert_equal(expected, expectedWithOutliers, 1e-3));
// GNC
// Note: in difficult instances, we set the odometry measurements to be
// inliers, but this problem is simple enought to succeed even without that
// assumption GncParams<GaussNewtonParams>::IndexVector knownInliers;
GncParams<GaussNewtonParams> gncParams;
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(*graph, *initial,
gncParams);
Values actual = gnc.optimize();
// compare
CHECK(assert_equal(expected, actual, 1e-3)); // yay! we are robust to outliers!
}
/* ************************************************************************* */
TEST(GncOptimizer, knownInliersAndOutliers) {
auto fg = example::sharedNonRobustFactorGraphWithOutliers();
Point2 p0(1, 0);
Values initial;
initial.insert(X(1), p0);
// nonconvexity with known inliers and known outliers (check early stopping
// when all measurements are known to be inliers or outliers)
{
GncParams<GaussNewtonParams>::IndexVector knownInliers;
knownInliers.push_back(0);
knownInliers.push_back(1);
knownInliers.push_back(2);
GncParams<GaussNewtonParams>::IndexVector knownOutliers;
knownOutliers.push_back(3);
GncParams<GaussNewtonParams> gncParams;
gncParams.setKnownInliers(knownInliers);
gncParams.setKnownOutliers(knownOutliers);
gncParams.setLossType(GncLossType::GM);
//gncParams.setVerbosityGNC(GncParams<GaussNewtonParams>::Verbosity::SUMMARY);
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(fg, initial,
gncParams);
gnc.setInlierCostThresholds(1.0);
Values gnc_result = gnc.optimize();
CHECK(assert_equal(Point2(0.0, 0.0), gnc_result.at<Point2>(X(1)), 1e-3));
// check weights were actually fixed:
Vector finalWeights = gnc.getWeights();
DOUBLES_EQUAL(1.0, finalWeights[0], tol);
DOUBLES_EQUAL(1.0, finalWeights[1], tol);
DOUBLES_EQUAL(1.0, finalWeights[2], tol);
DOUBLES_EQUAL(0.0, finalWeights[3], tol);
}
// nonconvexity with known inliers and known outliers
{
GncParams<GaussNewtonParams>::IndexVector knownInliers;
knownInliers.push_back(2);
knownInliers.push_back(0);
GncParams<GaussNewtonParams>::IndexVector knownOutliers;
knownOutliers.push_back(3);
GncParams<GaussNewtonParams> gncParams;
gncParams.setKnownInliers(knownInliers);
gncParams.setKnownOutliers(knownOutliers);
gncParams.setLossType(GncLossType::GM);
//gncParams.setVerbosityGNC(GncParams<GaussNewtonParams>::Verbosity::SUMMARY);
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(fg, initial,
gncParams);
gnc.setInlierCostThresholds(1.0);
Values gnc_result = gnc.optimize();
CHECK(assert_equal(Point2(0.0, 0.0), gnc_result.at<Point2>(X(1)), 1e-3));
// check weights were actually fixed:
Vector finalWeights = gnc.getWeights();
DOUBLES_EQUAL(1.0, finalWeights[0], tol);
DOUBLES_EQUAL(1.0, finalWeights[1], 1e-5);
DOUBLES_EQUAL(1.0, finalWeights[2], tol);
DOUBLES_EQUAL(0.0, finalWeights[3], tol);
}
// only known outliers
{
GncParams<GaussNewtonParams>::IndexVector knownOutliers;
knownOutliers.push_back(3);
GncParams<GaussNewtonParams> gncParams;
gncParams.setKnownOutliers(knownOutliers);
gncParams.setLossType(GncLossType::GM);
//gncParams.setVerbosityGNC(GncParams<GaussNewtonParams>::Verbosity::SUMMARY);
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(fg, initial,
gncParams);
gnc.setInlierCostThresholds(1.0);
Values gnc_result = gnc.optimize();
CHECK(assert_equal(Point2(0.0, 0.0), gnc_result.at<Point2>(X(1)), 1e-3));
// check weights were actually fixed:
Vector finalWeights = gnc.getWeights();
DOUBLES_EQUAL(1.0, finalWeights[0], tol);
DOUBLES_EQUAL(1.0, finalWeights[1], 1e-5);
DOUBLES_EQUAL(1.0, finalWeights[2], tol);
DOUBLES_EQUAL(0.0, finalWeights[3], tol);
}
}
/* ************************************************************************* */
TEST(GncOptimizer, setWeights) {
auto fg = example::sharedNonRobustFactorGraphWithOutliers();
Point2 p0(1, 0);
Values initial;
initial.insert(X(1), p0);
// initialize weights to be the same
{
GncParams<GaussNewtonParams> gncParams;
gncParams.setLossType(GncLossType::TLS);
Vector weights = 0.5 * Vector::Ones(fg.size());
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(fg, initial,
gncParams);
gnc.setWeights(weights);
gnc.setInlierCostThresholds(1.0);
Values gnc_result = gnc.optimize();
CHECK(assert_equal(Point2(0.0, 0.0), gnc_result.at<Point2>(X(1)), 1e-3));
// check weights were actually fixed:
Vector finalWeights = gnc.getWeights();
DOUBLES_EQUAL(1.0, finalWeights[0], tol);
DOUBLES_EQUAL(1.0, finalWeights[1], tol);
DOUBLES_EQUAL(1.0, finalWeights[2], tol);
DOUBLES_EQUAL(0.0, finalWeights[3], tol);
}
// try a more challenging initialization
{
GncParams<GaussNewtonParams> gncParams;
gncParams.setLossType(GncLossType::TLS);
Vector weights = Vector::Zero(fg.size());
weights(2) = 1.0;
weights(3) = 1.0; // bad initialization: we say the outlier is inlier
// GNC can still recover (but if you omit weights(2) = 1.0, then it would fail)
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(fg, initial,
gncParams);
gnc.setWeights(weights);
gnc.setInlierCostThresholds(1.0);
Values gnc_result = gnc.optimize();
CHECK(assert_equal(Point2(0.0, 0.0), gnc_result.at<Point2>(X(1)), 1e-3));
// check weights were actually fixed:
Vector finalWeights = gnc.getWeights();
DOUBLES_EQUAL(1.0, finalWeights[0], tol);
DOUBLES_EQUAL(1.0, finalWeights[1], tol);
DOUBLES_EQUAL(1.0, finalWeights[2], tol);
DOUBLES_EQUAL(0.0, finalWeights[3], tol);
}
// initialize weights and also set known inliers/outliers
{
GncParams<GaussNewtonParams> gncParams;
GncParams<GaussNewtonParams>::IndexVector knownInliers;
knownInliers.push_back(2);
knownInliers.push_back(0);
GncParams<GaussNewtonParams>::IndexVector knownOutliers;
knownOutliers.push_back(3);
gncParams.setKnownInliers(knownInliers);
gncParams.setKnownOutliers(knownOutliers);
gncParams.setLossType(GncLossType::TLS);
Vector weights = 0.5 * Vector::Ones(fg.size());
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(fg, initial,
gncParams);
gnc.setWeights(weights);
gnc.setInlierCostThresholds(1.0);
Values gnc_result = gnc.optimize();
CHECK(assert_equal(Point2(0.0, 0.0), gnc_result.at<Point2>(X(1)), 1e-3));
// check weights were actually fixed:
Vector finalWeights = gnc.getWeights();
DOUBLES_EQUAL(1.0, finalWeights[0], tol);
DOUBLES_EQUAL(1.0, finalWeights[1], tol);
DOUBLES_EQUAL(1.0, finalWeights[2], tol);
DOUBLES_EQUAL(0.0, finalWeights[3], tol);
}
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */