478 lines
19 KiB
C++
478 lines
19 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file HybridGaussianFactorGraph.cpp
|
|
* @brief Hybrid factor graph that uses type erasure
|
|
* @author Fan Jiang
|
|
* @author Varun Agrawal
|
|
* @author Frank Dellaert
|
|
* @date Mar 11, 2022
|
|
*/
|
|
|
|
#include <gtsam/base/utilities.h>
|
|
#include <gtsam/discrete/Assignment.h>
|
|
#include <gtsam/discrete/DiscreteEliminationTree.h>
|
|
#include <gtsam/discrete/DiscreteFactorGraph.h>
|
|
#include <gtsam/discrete/DiscreteJunctionTree.h>
|
|
#include <gtsam/hybrid/GaussianMixture.h>
|
|
#include <gtsam/hybrid/GaussianMixtureFactor.h>
|
|
#include <gtsam/hybrid/HybridConditional.h>
|
|
#include <gtsam/hybrid/HybridEliminationTree.h>
|
|
#include <gtsam/hybrid/HybridFactor.h>
|
|
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
|
|
#include <gtsam/hybrid/HybridJunctionTree.h>
|
|
#include <gtsam/inference/EliminateableFactorGraph-inst.h>
|
|
#include <gtsam/inference/Key.h>
|
|
#include <gtsam/linear/GaussianConditional.h>
|
|
#include <gtsam/linear/GaussianEliminationTree.h>
|
|
#include <gtsam/linear/GaussianFactorGraph.h>
|
|
#include <gtsam/linear/GaussianJunctionTree.h>
|
|
#include <gtsam/linear/HessianFactor.h>
|
|
#include <gtsam/linear/JacobianFactor.h>
|
|
|
|
#include <algorithm>
|
|
#include <cstddef>
|
|
#include <iostream>
|
|
#include <iterator>
|
|
#include <memory>
|
|
#include <stdexcept>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
// #define HYBRID_TIMING
|
|
|
|
namespace gtsam {
|
|
|
|
/// Specialize EliminateableFactorGraph for HybridGaussianFactorGraph:
|
|
template class EliminateableFactorGraph<HybridGaussianFactorGraph>;
|
|
|
|
using OrphanWrapper = BayesTreeOrphanWrapper<HybridBayesTree::Clique>;
|
|
|
|
using std::dynamic_pointer_cast;
|
|
|
|
/* ************************************************************************ */
|
|
// Throw a runtime exception for method specified in string s, and factor f:
|
|
static void throwRuntimeError(const std::string &s,
|
|
const std::shared_ptr<Factor> &f) {
|
|
auto &fr = *f;
|
|
throw std::runtime_error(s + " not implemented for factor type " +
|
|
demangle(typeid(fr).name()) + ".");
|
|
}
|
|
|
|
/* ************************************************************************ */
|
|
const Ordering HybridOrdering(const HybridGaussianFactorGraph &graph) {
|
|
KeySet discrete_keys = graph.discreteKeySet();
|
|
const VariableIndex index(graph);
|
|
return Ordering::ColamdConstrainedLast(
|
|
index, KeyVector(discrete_keys.begin(), discrete_keys.end()), true);
|
|
}
|
|
|
|
/* ************************************************************************ */
|
|
static GaussianFactorGraphTree addGaussian(
|
|
const GaussianFactorGraphTree &gfgTree,
|
|
const GaussianFactor::shared_ptr &factor) {
|
|
// If the decision tree is not initialized, then initialize it.
|
|
if (gfgTree.empty()) {
|
|
GaussianFactorGraph result{factor};
|
|
return GaussianFactorGraphTree(result);
|
|
} else {
|
|
auto add = [&factor](const GaussianFactorGraph &graph) {
|
|
auto result = graph;
|
|
result.push_back(factor);
|
|
return result;
|
|
};
|
|
return gfgTree.apply(add);
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************ */
|
|
// TODO(dellaert): it's probably more efficient to first collect the discrete
|
|
// keys, and then loop over all assignments to populate a vector.
|
|
GaussianFactorGraphTree HybridGaussianFactorGraph::assembleGraphTree() const {
|
|
gttic(assembleGraphTree);
|
|
|
|
GaussianFactorGraphTree result;
|
|
|
|
for (auto &f : factors_) {
|
|
// TODO(dellaert): just use a virtual method defined in HybridFactor.
|
|
if (auto gf = dynamic_pointer_cast<GaussianFactor>(f)) {
|
|
result = addGaussian(result, gf);
|
|
} else if (auto gm = dynamic_pointer_cast<GaussianMixtureFactor>(f)) {
|
|
result = gm->add(result);
|
|
} else if (auto hc = dynamic_pointer_cast<HybridConditional>(f)) {
|
|
if (auto gm = hc->asMixture()) {
|
|
result = gm->add(result);
|
|
} else if (auto g = hc->asGaussian()) {
|
|
result = addGaussian(result, g);
|
|
} else {
|
|
// Has to be discrete.
|
|
// TODO(dellaert): in C++20, we can use std::visit.
|
|
continue;
|
|
}
|
|
} else if (dynamic_pointer_cast<DecisionTreeFactor>(f)) {
|
|
// Don't do anything for discrete-only factors
|
|
// since we want to eliminate continuous values only.
|
|
continue;
|
|
} else {
|
|
// TODO(dellaert): there was an unattributed comment here: We need to
|
|
// handle the case where the object is actually an BayesTreeOrphanWrapper!
|
|
throwRuntimeError("gtsam::assembleGraphTree", f);
|
|
}
|
|
}
|
|
|
|
gttoc(assembleGraphTree);
|
|
|
|
return result;
|
|
}
|
|
|
|
/* ************************************************************************ */
|
|
static std::pair<HybridConditional::shared_ptr, std::shared_ptr<Factor>>
|
|
continuousElimination(const HybridGaussianFactorGraph &factors,
|
|
const Ordering &frontalKeys) {
|
|
GaussianFactorGraph gfg;
|
|
for (auto &f : factors) {
|
|
if (auto gf = dynamic_pointer_cast<GaussianFactor>(f)) {
|
|
gfg.push_back(gf);
|
|
} else if (auto orphan = dynamic_pointer_cast<OrphanWrapper>(f)) {
|
|
// Ignore orphaned clique.
|
|
// TODO(dellaert): is this correct? If so explain here.
|
|
} else if (auto hc = dynamic_pointer_cast<HybridConditional>(f)) {
|
|
auto gc = hc->asGaussian();
|
|
if (!gc) throwRuntimeError("continuousElimination", gc);
|
|
gfg.push_back(gc);
|
|
} else {
|
|
throwRuntimeError("continuousElimination", f);
|
|
}
|
|
}
|
|
|
|
auto result = EliminatePreferCholesky(gfg, frontalKeys);
|
|
return {std::make_shared<HybridConditional>(result.first), result.second};
|
|
}
|
|
|
|
/* ************************************************************************ */
|
|
static std::pair<HybridConditional::shared_ptr, std::shared_ptr<Factor>>
|
|
discreteElimination(const HybridGaussianFactorGraph &factors,
|
|
const Ordering &frontalKeys) {
|
|
DiscreteFactorGraph dfg;
|
|
|
|
for (auto &f : factors) {
|
|
if (auto dtf = dynamic_pointer_cast<DecisionTreeFactor>(f)) {
|
|
dfg.push_back(dtf);
|
|
} else if (auto orphan = dynamic_pointer_cast<OrphanWrapper>(f)) {
|
|
// Ignore orphaned clique.
|
|
// TODO(dellaert): is this correct? If so explain here.
|
|
} else if (auto hc = dynamic_pointer_cast<HybridConditional>(f)) {
|
|
auto dc = hc->asDiscrete();
|
|
if (!dc) throwRuntimeError("continuousElimination", dc);
|
|
dfg.push_back(hc->asDiscrete());
|
|
} else {
|
|
throwRuntimeError("continuousElimination", f);
|
|
}
|
|
}
|
|
|
|
// NOTE: This does sum-product. For max-product, use EliminateForMPE.
|
|
auto result = EliminateDiscrete(dfg, frontalKeys);
|
|
|
|
return {std::make_shared<HybridConditional>(result.first), result.second};
|
|
}
|
|
|
|
/* ************************************************************************ */
|
|
// If any GaussianFactorGraph in the decision tree contains a nullptr, convert
|
|
// that leaf to an empty GaussianFactorGraph. Needed since the DecisionTree will
|
|
// otherwise create a GFG with a single (null) factor.
|
|
// TODO(dellaert): still a mystery to me why this is needed.
|
|
GaussianFactorGraphTree removeEmpty(const GaussianFactorGraphTree &sum) {
|
|
auto emptyGaussian = [](const GaussianFactorGraph &graph) {
|
|
bool hasNull =
|
|
std::any_of(graph.begin(), graph.end(),
|
|
[](const GaussianFactor::shared_ptr &ptr) { return !ptr; });
|
|
return hasNull ? GaussianFactorGraph() : graph;
|
|
};
|
|
return GaussianFactorGraphTree(sum, emptyGaussian);
|
|
}
|
|
|
|
/* ************************************************************************ */
|
|
static std::pair<HybridConditional::shared_ptr, std::shared_ptr<Factor>>
|
|
hybridElimination(const HybridGaussianFactorGraph &factors,
|
|
const Ordering &frontalKeys,
|
|
const KeyVector &continuousSeparator,
|
|
const std::set<DiscreteKey> &discreteSeparatorSet) {
|
|
// NOTE: since we use the special JunctionTree,
|
|
// only possibility is continuous conditioned on discrete.
|
|
DiscreteKeys discreteSeparator(discreteSeparatorSet.begin(),
|
|
discreteSeparatorSet.end());
|
|
|
|
// Collect all the factors to create a set of Gaussian factor graphs in a
|
|
// decision tree indexed by all discrete keys involved.
|
|
GaussianFactorGraphTree factorGraphTree = factors.assembleGraphTree();
|
|
|
|
// Convert factor graphs with a nullptr to an empty factor graph.
|
|
// This is done after assembly since it is non-trivial to keep track of which
|
|
// FG has a nullptr as we're looping over the factors.
|
|
factorGraphTree = removeEmpty(factorGraphTree);
|
|
|
|
using Result = std::pair<std::shared_ptr<GaussianConditional>,
|
|
GaussianMixtureFactor::sharedFactor>;
|
|
|
|
// This is the elimination method on the leaf nodes
|
|
auto eliminate = [&](const GaussianFactorGraph &graph) -> Result {
|
|
if (graph.empty()) {
|
|
return {nullptr, nullptr};
|
|
}
|
|
|
|
#ifdef HYBRID_TIMING
|
|
gttic_(hybrid_eliminate);
|
|
#endif
|
|
|
|
auto result = EliminatePreferCholesky(graph, frontalKeys);
|
|
|
|
#ifdef HYBRID_TIMING
|
|
gttoc_(hybrid_eliminate);
|
|
#endif
|
|
|
|
return result;
|
|
};
|
|
|
|
// Perform elimination!
|
|
DecisionTree<Key, Result> eliminationResults(factorGraphTree, eliminate);
|
|
|
|
#ifdef HYBRID_TIMING
|
|
tictoc_print_();
|
|
tictoc_reset_();
|
|
#endif
|
|
|
|
// Separate out decision tree into conditionals and remaining factors.
|
|
const auto [conditionals, newFactors] = unzip(eliminationResults);
|
|
|
|
// Create the GaussianMixture from the conditionals
|
|
auto gaussianMixture = std::make_shared<GaussianMixture>(
|
|
frontalKeys, continuousSeparator, discreteSeparator, conditionals);
|
|
|
|
if (continuousSeparator.empty()) {
|
|
// If there are no more continuous parents, then we create a
|
|
// DiscreteFactor here, with the error for each discrete choice.
|
|
|
|
// Integrate the probability mass in the last continuous conditional using
|
|
// the unnormalized probability q(μ;m) = exp(-error(μ;m)) at the mean.
|
|
// discrete_probability = exp(-error(μ;m)) * sqrt(det(2π Σ_m))
|
|
auto probability = [&](const Result &pair) -> double {
|
|
static const VectorValues kEmpty;
|
|
// If the factor is not null, it has no keys, just contains the residual.
|
|
const auto &factor = pair.second;
|
|
if (!factor) return 1.0; // TODO(dellaert): not loving this.
|
|
return exp(-factor->error(kEmpty)) / pair.first->normalizationConstant();
|
|
};
|
|
|
|
DecisionTree<Key, double> probabilities(eliminationResults, probability);
|
|
return {std::make_shared<HybridConditional>(gaussianMixture),
|
|
std::make_shared<DecisionTreeFactor>(discreteSeparator,
|
|
probabilities)};
|
|
} else {
|
|
// Otherwise, we create a resulting GaussianMixtureFactor on the separator,
|
|
// taking care to correct for conditional constant.
|
|
|
|
// Correct for the normalization constant used up by the conditional
|
|
auto correct = [&](const Result &pair) -> GaussianFactor::shared_ptr {
|
|
const auto &factor = pair.second;
|
|
if (!factor) return factor; // TODO(dellaert): not loving this.
|
|
auto hf = std::dynamic_pointer_cast<HessianFactor>(factor);
|
|
if (!hf) throw std::runtime_error("Expected HessianFactor!");
|
|
hf->constantTerm() += 2.0 * pair.first->logNormalizationConstant();
|
|
return hf;
|
|
};
|
|
|
|
GaussianMixtureFactor::Factors correctedFactors(eliminationResults,
|
|
correct);
|
|
const auto mixtureFactor = std::make_shared<GaussianMixtureFactor>(
|
|
continuousSeparator, discreteSeparator, newFactors);
|
|
|
|
return {std::make_shared<HybridConditional>(gaussianMixture),
|
|
mixtureFactor};
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************
|
|
* Function to eliminate variables **under the following assumptions**:
|
|
* 1. When the ordering is fully continuous, and the graph only contains
|
|
* continuous and hybrid factors
|
|
* 2. When the ordering is fully discrete, and the graph only contains discrete
|
|
* factors
|
|
*
|
|
* Any usage outside of this is considered incorrect.
|
|
*
|
|
* \warning This function is not meant to be used with arbitrary hybrid factor
|
|
* graphs. For example, if there exists continuous parents, and one tries to
|
|
* eliminate a discrete variable (as specified in the ordering), the result will
|
|
* be INCORRECT and there will be NO error raised.
|
|
*/
|
|
std::pair<HybridConditional::shared_ptr, std::shared_ptr<Factor>> //
|
|
EliminateHybrid(const HybridGaussianFactorGraph &factors,
|
|
const Ordering &frontalKeys) {
|
|
// NOTE: Because we are in the Conditional Gaussian regime there are only
|
|
// a few cases:
|
|
// 1. continuous variable, make a Gaussian Mixture if there are hybrid
|
|
// factors;
|
|
// 2. continuous variable, we make a Gaussian Factor if there are no hybrid
|
|
// factors;
|
|
// 3. discrete variable, no continuous factor is allowed
|
|
// (escapes Conditional Gaussian regime), if discrete only we do the discrete
|
|
// elimination.
|
|
|
|
// However it is not that simple. During elimination it is possible that the
|
|
// multifrontal needs to eliminate an ordering that contains both Gaussian and
|
|
// hybrid variables, for example x1, c1.
|
|
// In this scenario, we will have a density P(x1, c1) that is a Conditional
|
|
// Linear Gaussian P(x1|c1)P(c1) (see Murphy02).
|
|
|
|
// The issue here is that, how can we know which variable is discrete if we
|
|
// unify Values? Obviously we can tell using the factors, but is that fast?
|
|
|
|
// In the case of multifrontal, we will need to use a constrained ordering
|
|
// so that the discrete parts will be guaranteed to be eliminated last!
|
|
// Because of all these reasons, we carefully consider how to
|
|
// implement the hybrid factors so that we do not get poor performance.
|
|
|
|
// The first thing is how to represent the GaussianMixture.
|
|
// A very possible scenario is that the incoming factors will have different
|
|
// levels of discrete keys. For example, imagine we are going to eliminate the
|
|
// fragment: $\phi(x1,c1,c2)$, $\phi(x1,c2,c3)$, which is perfectly valid.
|
|
// Now we will need to know how to retrieve the corresponding continuous
|
|
// densities for the assignment (c1,c2,c3) (OR (c2,c3,c1), note there is NO
|
|
// defined order!). We also need to consider when there is pruning. Two
|
|
// mixture factors could have different pruning patterns - one could have
|
|
// (c1=0,c2=1) pruned, and another could have (c2=0,c3=1) pruned, and this
|
|
// creates a big problem in how to identify the intersection of non-pruned
|
|
// branches.
|
|
|
|
// Our approach is first building the collection of all discrete keys. After
|
|
// that we enumerate the space of all key combinations *lazily* so that the
|
|
// exploration branch terminates whenever an assignment yields NULL in any of
|
|
// the hybrid factors.
|
|
|
|
// When the number of assignments is large we may encounter stack overflows.
|
|
// However this is also the case with iSAM2, so no pressure :)
|
|
|
|
// PREPROCESS: Identify the nature of the current elimination
|
|
|
|
// TODO(dellaert): just check the factors:
|
|
// 1. if all factors are discrete, then we can do discrete elimination:
|
|
// 2. if all factors are continuous, then we can do continuous elimination:
|
|
// 3. if not, we do hybrid elimination:
|
|
|
|
// First, identify the separator keys, i.e. all keys that are not frontal.
|
|
KeySet separatorKeys;
|
|
for (auto &&factor : factors) {
|
|
separatorKeys.insert(factor->begin(), factor->end());
|
|
}
|
|
// remove frontals from separator
|
|
for (auto &k : frontalKeys) {
|
|
separatorKeys.erase(k);
|
|
}
|
|
|
|
// Build a map from keys to DiscreteKeys
|
|
auto mapFromKeyToDiscreteKey = factors.discreteKeyMap();
|
|
|
|
// Fill in discrete frontals and continuous frontals.
|
|
std::set<DiscreteKey> discreteFrontals;
|
|
KeySet continuousFrontals;
|
|
for (auto &k : frontalKeys) {
|
|
if (mapFromKeyToDiscreteKey.find(k) != mapFromKeyToDiscreteKey.end()) {
|
|
discreteFrontals.insert(mapFromKeyToDiscreteKey.at(k));
|
|
} else {
|
|
continuousFrontals.insert(k);
|
|
}
|
|
}
|
|
|
|
// Fill in discrete discrete separator keys and continuous separator keys.
|
|
std::set<DiscreteKey> discreteSeparatorSet;
|
|
KeyVector continuousSeparator;
|
|
for (auto &k : separatorKeys) {
|
|
if (mapFromKeyToDiscreteKey.find(k) != mapFromKeyToDiscreteKey.end()) {
|
|
discreteSeparatorSet.insert(mapFromKeyToDiscreteKey.at(k));
|
|
} else {
|
|
continuousSeparator.push_back(k);
|
|
}
|
|
}
|
|
|
|
// Check if we have any continuous keys:
|
|
const bool discrete_only =
|
|
continuousFrontals.empty() && continuousSeparator.empty();
|
|
|
|
// NOTE: We should really defer the product here because of pruning
|
|
|
|
if (discrete_only) {
|
|
// Case 1: we are only dealing with discrete
|
|
return discreteElimination(factors, frontalKeys);
|
|
} else if (mapFromKeyToDiscreteKey.empty()) {
|
|
// Case 2: we are only dealing with continuous
|
|
return continuousElimination(factors, frontalKeys);
|
|
} else {
|
|
// Case 3: We are now in the hybrid land!
|
|
#ifdef HYBRID_TIMING
|
|
tictoc_reset_();
|
|
#endif
|
|
return hybridElimination(factors, frontalKeys, continuousSeparator,
|
|
discreteSeparatorSet);
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************ */
|
|
AlgebraicDecisionTree<Key> HybridGaussianFactorGraph::error(
|
|
const VectorValues &continuousValues) const {
|
|
AlgebraicDecisionTree<Key> error_tree(0.0);
|
|
|
|
// Iterate over each factor.
|
|
for (auto &f : factors_) {
|
|
// TODO(dellaert): just use a virtual method defined in HybridFactor.
|
|
AlgebraicDecisionTree<Key> factor_error;
|
|
|
|
if (auto gaussianMixture = dynamic_pointer_cast<GaussianMixtureFactor>(f)) {
|
|
// Compute factor error and add it.
|
|
error_tree = error_tree + gaussianMixture->error(continuousValues);
|
|
} else if (auto gaussian = dynamic_pointer_cast<GaussianFactor>(f)) {
|
|
// If continuous only, get the (double) error
|
|
// and add it to the error_tree
|
|
double error = gaussian->error(continuousValues);
|
|
// Add the gaussian factor error to every leaf of the error tree.
|
|
error_tree = error_tree.apply(
|
|
[error](double leaf_value) { return leaf_value + error; });
|
|
} else if (dynamic_pointer_cast<DecisionTreeFactor>(f)) {
|
|
// If factor at `idx` is discrete-only, we skip.
|
|
continue;
|
|
} else {
|
|
throwRuntimeError("HybridGaussianFactorGraph::error(VV)", f);
|
|
}
|
|
}
|
|
|
|
return error_tree;
|
|
}
|
|
|
|
/* ************************************************************************ */
|
|
double HybridGaussianFactorGraph::probPrime(const HybridValues &values) const {
|
|
double error = this->error(values);
|
|
// NOTE: The 0.5 term is handled by each factor
|
|
return std::exp(-error);
|
|
}
|
|
|
|
/* ************************************************************************ */
|
|
AlgebraicDecisionTree<Key> HybridGaussianFactorGraph::probPrime(
|
|
const VectorValues &continuousValues) const {
|
|
AlgebraicDecisionTree<Key> error_tree = this->error(continuousValues);
|
|
AlgebraicDecisionTree<Key> prob_tree = error_tree.apply([](double error) {
|
|
// NOTE: The 0.5 term is handled by each factor
|
|
return exp(-error);
|
|
});
|
|
return prob_tree;
|
|
}
|
|
|
|
} // namespace gtsam
|