gtsam/gtsam/hybrid/HybridGaussianFactorGraph.cpp

478 lines
19 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file HybridGaussianFactorGraph.cpp
* @brief Hybrid factor graph that uses type erasure
* @author Fan Jiang
* @author Varun Agrawal
* @author Frank Dellaert
* @date Mar 11, 2022
*/
#include <gtsam/base/utilities.h>
#include <gtsam/discrete/Assignment.h>
#include <gtsam/discrete/DiscreteEliminationTree.h>
#include <gtsam/discrete/DiscreteFactorGraph.h>
#include <gtsam/discrete/DiscreteJunctionTree.h>
#include <gtsam/hybrid/GaussianMixture.h>
#include <gtsam/hybrid/GaussianMixtureFactor.h>
#include <gtsam/hybrid/HybridConditional.h>
#include <gtsam/hybrid/HybridEliminationTree.h>
#include <gtsam/hybrid/HybridFactor.h>
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
#include <gtsam/hybrid/HybridJunctionTree.h>
#include <gtsam/inference/EliminateableFactorGraph-inst.h>
#include <gtsam/inference/Key.h>
#include <gtsam/linear/GaussianConditional.h>
#include <gtsam/linear/GaussianEliminationTree.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/GaussianJunctionTree.h>
#include <gtsam/linear/HessianFactor.h>
#include <gtsam/linear/JacobianFactor.h>
#include <algorithm>
#include <cstddef>
#include <iostream>
#include <iterator>
#include <memory>
#include <stdexcept>
#include <utility>
#include <vector>
// #define HYBRID_TIMING
namespace gtsam {
/// Specialize EliminateableFactorGraph for HybridGaussianFactorGraph:
template class EliminateableFactorGraph<HybridGaussianFactorGraph>;
using OrphanWrapper = BayesTreeOrphanWrapper<HybridBayesTree::Clique>;
using std::dynamic_pointer_cast;
/* ************************************************************************ */
// Throw a runtime exception for method specified in string s, and factor f:
static void throwRuntimeError(const std::string &s,
const std::shared_ptr<Factor> &f) {
auto &fr = *f;
throw std::runtime_error(s + " not implemented for factor type " +
demangle(typeid(fr).name()) + ".");
}
/* ************************************************************************ */
const Ordering HybridOrdering(const HybridGaussianFactorGraph &graph) {
KeySet discrete_keys = graph.discreteKeySet();
const VariableIndex index(graph);
return Ordering::ColamdConstrainedLast(
index, KeyVector(discrete_keys.begin(), discrete_keys.end()), true);
}
/* ************************************************************************ */
static GaussianFactorGraphTree addGaussian(
const GaussianFactorGraphTree &gfgTree,
const GaussianFactor::shared_ptr &factor) {
// If the decision tree is not initialized, then initialize it.
if (gfgTree.empty()) {
GaussianFactorGraph result{factor};
return GaussianFactorGraphTree(result);
} else {
auto add = [&factor](const GaussianFactorGraph &graph) {
auto result = graph;
result.push_back(factor);
return result;
};
return gfgTree.apply(add);
}
}
/* ************************************************************************ */
// TODO(dellaert): it's probably more efficient to first collect the discrete
// keys, and then loop over all assignments to populate a vector.
GaussianFactorGraphTree HybridGaussianFactorGraph::assembleGraphTree() const {
gttic(assembleGraphTree);
GaussianFactorGraphTree result;
for (auto &f : factors_) {
// TODO(dellaert): just use a virtual method defined in HybridFactor.
if (auto gf = dynamic_pointer_cast<GaussianFactor>(f)) {
result = addGaussian(result, gf);
} else if (auto gm = dynamic_pointer_cast<GaussianMixtureFactor>(f)) {
result = gm->add(result);
} else if (auto hc = dynamic_pointer_cast<HybridConditional>(f)) {
if (auto gm = hc->asMixture()) {
result = gm->add(result);
} else if (auto g = hc->asGaussian()) {
result = addGaussian(result, g);
} else {
// Has to be discrete.
// TODO(dellaert): in C++20, we can use std::visit.
continue;
}
} else if (dynamic_pointer_cast<DecisionTreeFactor>(f)) {
// Don't do anything for discrete-only factors
// since we want to eliminate continuous values only.
continue;
} else {
// TODO(dellaert): there was an unattributed comment here: We need to
// handle the case where the object is actually an BayesTreeOrphanWrapper!
throwRuntimeError("gtsam::assembleGraphTree", f);
}
}
gttoc(assembleGraphTree);
return result;
}
/* ************************************************************************ */
static std::pair<HybridConditional::shared_ptr, std::shared_ptr<Factor>>
continuousElimination(const HybridGaussianFactorGraph &factors,
const Ordering &frontalKeys) {
GaussianFactorGraph gfg;
for (auto &f : factors) {
if (auto gf = dynamic_pointer_cast<GaussianFactor>(f)) {
gfg.push_back(gf);
} else if (auto orphan = dynamic_pointer_cast<OrphanWrapper>(f)) {
// Ignore orphaned clique.
// TODO(dellaert): is this correct? If so explain here.
} else if (auto hc = dynamic_pointer_cast<HybridConditional>(f)) {
auto gc = hc->asGaussian();
if (!gc) throwRuntimeError("continuousElimination", gc);
gfg.push_back(gc);
} else {
throwRuntimeError("continuousElimination", f);
}
}
auto result = EliminatePreferCholesky(gfg, frontalKeys);
return {std::make_shared<HybridConditional>(result.first), result.second};
}
/* ************************************************************************ */
static std::pair<HybridConditional::shared_ptr, std::shared_ptr<Factor>>
discreteElimination(const HybridGaussianFactorGraph &factors,
const Ordering &frontalKeys) {
DiscreteFactorGraph dfg;
for (auto &f : factors) {
if (auto dtf = dynamic_pointer_cast<DecisionTreeFactor>(f)) {
dfg.push_back(dtf);
} else if (auto orphan = dynamic_pointer_cast<OrphanWrapper>(f)) {
// Ignore orphaned clique.
// TODO(dellaert): is this correct? If so explain here.
} else if (auto hc = dynamic_pointer_cast<HybridConditional>(f)) {
auto dc = hc->asDiscrete();
if (!dc) throwRuntimeError("continuousElimination", dc);
dfg.push_back(hc->asDiscrete());
} else {
throwRuntimeError("continuousElimination", f);
}
}
// NOTE: This does sum-product. For max-product, use EliminateForMPE.
auto result = EliminateDiscrete(dfg, frontalKeys);
return {std::make_shared<HybridConditional>(result.first), result.second};
}
/* ************************************************************************ */
// If any GaussianFactorGraph in the decision tree contains a nullptr, convert
// that leaf to an empty GaussianFactorGraph. Needed since the DecisionTree will
// otherwise create a GFG with a single (null) factor.
// TODO(dellaert): still a mystery to me why this is needed.
GaussianFactorGraphTree removeEmpty(const GaussianFactorGraphTree &sum) {
auto emptyGaussian = [](const GaussianFactorGraph &graph) {
bool hasNull =
std::any_of(graph.begin(), graph.end(),
[](const GaussianFactor::shared_ptr &ptr) { return !ptr; });
return hasNull ? GaussianFactorGraph() : graph;
};
return GaussianFactorGraphTree(sum, emptyGaussian);
}
/* ************************************************************************ */
static std::pair<HybridConditional::shared_ptr, std::shared_ptr<Factor>>
hybridElimination(const HybridGaussianFactorGraph &factors,
const Ordering &frontalKeys,
const KeyVector &continuousSeparator,
const std::set<DiscreteKey> &discreteSeparatorSet) {
// NOTE: since we use the special JunctionTree,
// only possibility is continuous conditioned on discrete.
DiscreteKeys discreteSeparator(discreteSeparatorSet.begin(),
discreteSeparatorSet.end());
// Collect all the factors to create a set of Gaussian factor graphs in a
// decision tree indexed by all discrete keys involved.
GaussianFactorGraphTree factorGraphTree = factors.assembleGraphTree();
// Convert factor graphs with a nullptr to an empty factor graph.
// This is done after assembly since it is non-trivial to keep track of which
// FG has a nullptr as we're looping over the factors.
factorGraphTree = removeEmpty(factorGraphTree);
using Result = std::pair<std::shared_ptr<GaussianConditional>,
GaussianMixtureFactor::sharedFactor>;
// This is the elimination method on the leaf nodes
auto eliminate = [&](const GaussianFactorGraph &graph) -> Result {
if (graph.empty()) {
return {nullptr, nullptr};
}
#ifdef HYBRID_TIMING
gttic_(hybrid_eliminate);
#endif
auto result = EliminatePreferCholesky(graph, frontalKeys);
#ifdef HYBRID_TIMING
gttoc_(hybrid_eliminate);
#endif
return result;
};
// Perform elimination!
DecisionTree<Key, Result> eliminationResults(factorGraphTree, eliminate);
#ifdef HYBRID_TIMING
tictoc_print_();
tictoc_reset_();
#endif
// Separate out decision tree into conditionals and remaining factors.
const auto [conditionals, newFactors] = unzip(eliminationResults);
// Create the GaussianMixture from the conditionals
auto gaussianMixture = std::make_shared<GaussianMixture>(
frontalKeys, continuousSeparator, discreteSeparator, conditionals);
if (continuousSeparator.empty()) {
// If there are no more continuous parents, then we create a
// DiscreteFactor here, with the error for each discrete choice.
// Integrate the probability mass in the last continuous conditional using
// the unnormalized probability q(μ;m) = exp(-error(μ;m)) at the mean.
// discrete_probability = exp(-error(μ;m)) * sqrt(det(2π Σ_m))
auto probability = [&](const Result &pair) -> double {
static const VectorValues kEmpty;
// If the factor is not null, it has no keys, just contains the residual.
const auto &factor = pair.second;
if (!factor) return 1.0; // TODO(dellaert): not loving this.
return exp(-factor->error(kEmpty)) / pair.first->normalizationConstant();
};
DecisionTree<Key, double> probabilities(eliminationResults, probability);
return {std::make_shared<HybridConditional>(gaussianMixture),
std::make_shared<DecisionTreeFactor>(discreteSeparator,
probabilities)};
} else {
// Otherwise, we create a resulting GaussianMixtureFactor on the separator,
// taking care to correct for conditional constant.
// Correct for the normalization constant used up by the conditional
auto correct = [&](const Result &pair) -> GaussianFactor::shared_ptr {
const auto &factor = pair.second;
if (!factor) return factor; // TODO(dellaert): not loving this.
auto hf = std::dynamic_pointer_cast<HessianFactor>(factor);
if (!hf) throw std::runtime_error("Expected HessianFactor!");
hf->constantTerm() += 2.0 * pair.first->logNormalizationConstant();
return hf;
};
GaussianMixtureFactor::Factors correctedFactors(eliminationResults,
correct);
const auto mixtureFactor = std::make_shared<GaussianMixtureFactor>(
continuousSeparator, discreteSeparator, newFactors);
return {std::make_shared<HybridConditional>(gaussianMixture),
mixtureFactor};
}
}
/* ************************************************************************
* Function to eliminate variables **under the following assumptions**:
* 1. When the ordering is fully continuous, and the graph only contains
* continuous and hybrid factors
* 2. When the ordering is fully discrete, and the graph only contains discrete
* factors
*
* Any usage outside of this is considered incorrect.
*
* \warning This function is not meant to be used with arbitrary hybrid factor
* graphs. For example, if there exists continuous parents, and one tries to
* eliminate a discrete variable (as specified in the ordering), the result will
* be INCORRECT and there will be NO error raised.
*/
std::pair<HybridConditional::shared_ptr, std::shared_ptr<Factor>> //
EliminateHybrid(const HybridGaussianFactorGraph &factors,
const Ordering &frontalKeys) {
// NOTE: Because we are in the Conditional Gaussian regime there are only
// a few cases:
// 1. continuous variable, make a Gaussian Mixture if there are hybrid
// factors;
// 2. continuous variable, we make a Gaussian Factor if there are no hybrid
// factors;
// 3. discrete variable, no continuous factor is allowed
// (escapes Conditional Gaussian regime), if discrete only we do the discrete
// elimination.
// However it is not that simple. During elimination it is possible that the
// multifrontal needs to eliminate an ordering that contains both Gaussian and
// hybrid variables, for example x1, c1.
// In this scenario, we will have a density P(x1, c1) that is a Conditional
// Linear Gaussian P(x1|c1)P(c1) (see Murphy02).
// The issue here is that, how can we know which variable is discrete if we
// unify Values? Obviously we can tell using the factors, but is that fast?
// In the case of multifrontal, we will need to use a constrained ordering
// so that the discrete parts will be guaranteed to be eliminated last!
// Because of all these reasons, we carefully consider how to
// implement the hybrid factors so that we do not get poor performance.
// The first thing is how to represent the GaussianMixture.
// A very possible scenario is that the incoming factors will have different
// levels of discrete keys. For example, imagine we are going to eliminate the
// fragment: $\phi(x1,c1,c2)$, $\phi(x1,c2,c3)$, which is perfectly valid.
// Now we will need to know how to retrieve the corresponding continuous
// densities for the assignment (c1,c2,c3) (OR (c2,c3,c1), note there is NO
// defined order!). We also need to consider when there is pruning. Two
// mixture factors could have different pruning patterns - one could have
// (c1=0,c2=1) pruned, and another could have (c2=0,c3=1) pruned, and this
// creates a big problem in how to identify the intersection of non-pruned
// branches.
// Our approach is first building the collection of all discrete keys. After
// that we enumerate the space of all key combinations *lazily* so that the
// exploration branch terminates whenever an assignment yields NULL in any of
// the hybrid factors.
// When the number of assignments is large we may encounter stack overflows.
// However this is also the case with iSAM2, so no pressure :)
// PREPROCESS: Identify the nature of the current elimination
// TODO(dellaert): just check the factors:
// 1. if all factors are discrete, then we can do discrete elimination:
// 2. if all factors are continuous, then we can do continuous elimination:
// 3. if not, we do hybrid elimination:
// First, identify the separator keys, i.e. all keys that are not frontal.
KeySet separatorKeys;
for (auto &&factor : factors) {
separatorKeys.insert(factor->begin(), factor->end());
}
// remove frontals from separator
for (auto &k : frontalKeys) {
separatorKeys.erase(k);
}
// Build a map from keys to DiscreteKeys
auto mapFromKeyToDiscreteKey = factors.discreteKeyMap();
// Fill in discrete frontals and continuous frontals.
std::set<DiscreteKey> discreteFrontals;
KeySet continuousFrontals;
for (auto &k : frontalKeys) {
if (mapFromKeyToDiscreteKey.find(k) != mapFromKeyToDiscreteKey.end()) {
discreteFrontals.insert(mapFromKeyToDiscreteKey.at(k));
} else {
continuousFrontals.insert(k);
}
}
// Fill in discrete discrete separator keys and continuous separator keys.
std::set<DiscreteKey> discreteSeparatorSet;
KeyVector continuousSeparator;
for (auto &k : separatorKeys) {
if (mapFromKeyToDiscreteKey.find(k) != mapFromKeyToDiscreteKey.end()) {
discreteSeparatorSet.insert(mapFromKeyToDiscreteKey.at(k));
} else {
continuousSeparator.push_back(k);
}
}
// Check if we have any continuous keys:
const bool discrete_only =
continuousFrontals.empty() && continuousSeparator.empty();
// NOTE: We should really defer the product here because of pruning
if (discrete_only) {
// Case 1: we are only dealing with discrete
return discreteElimination(factors, frontalKeys);
} else if (mapFromKeyToDiscreteKey.empty()) {
// Case 2: we are only dealing with continuous
return continuousElimination(factors, frontalKeys);
} else {
// Case 3: We are now in the hybrid land!
#ifdef HYBRID_TIMING
tictoc_reset_();
#endif
return hybridElimination(factors, frontalKeys, continuousSeparator,
discreteSeparatorSet);
}
}
/* ************************************************************************ */
AlgebraicDecisionTree<Key> HybridGaussianFactorGraph::error(
const VectorValues &continuousValues) const {
AlgebraicDecisionTree<Key> error_tree(0.0);
// Iterate over each factor.
for (auto &f : factors_) {
// TODO(dellaert): just use a virtual method defined in HybridFactor.
AlgebraicDecisionTree<Key> factor_error;
if (auto gaussianMixture = dynamic_pointer_cast<GaussianMixtureFactor>(f)) {
// Compute factor error and add it.
error_tree = error_tree + gaussianMixture->error(continuousValues);
} else if (auto gaussian = dynamic_pointer_cast<GaussianFactor>(f)) {
// If continuous only, get the (double) error
// and add it to the error_tree
double error = gaussian->error(continuousValues);
// Add the gaussian factor error to every leaf of the error tree.
error_tree = error_tree.apply(
[error](double leaf_value) { return leaf_value + error; });
} else if (dynamic_pointer_cast<DecisionTreeFactor>(f)) {
// If factor at `idx` is discrete-only, we skip.
continue;
} else {
throwRuntimeError("HybridGaussianFactorGraph::error(VV)", f);
}
}
return error_tree;
}
/* ************************************************************************ */
double HybridGaussianFactorGraph::probPrime(const HybridValues &values) const {
double error = this->error(values);
// NOTE: The 0.5 term is handled by each factor
return std::exp(-error);
}
/* ************************************************************************ */
AlgebraicDecisionTree<Key> HybridGaussianFactorGraph::probPrime(
const VectorValues &continuousValues) const {
AlgebraicDecisionTree<Key> error_tree = this->error(continuousValues);
AlgebraicDecisionTree<Key> prob_tree = error_tree.apply([](double error) {
// NOTE: The 0.5 term is handled by each factor
return exp(-error);
});
return prob_tree;
}
} // namespace gtsam