601 lines
24 KiB
C++
601 lines
24 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file testConcurrentIncrementalSmoother.cpp
|
|
* @brief Unit tests for the Concurrent Batch Smoother
|
|
* @author Stephen Williams (swilliams8@gatech.edu)
|
|
* @date Jan 5, 2013
|
|
*/
|
|
|
|
#include <gtsam_unstable/nonlinear/ConcurrentIncrementalSmoother.h>
|
|
#include <gtsam/nonlinear/PriorFactor.h>
|
|
#include <gtsam/slam/BetweenFactor.h>
|
|
#include <gtsam/nonlinear/ISAM2.h>
|
|
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
|
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
|
#include <gtsam/nonlinear/LinearContainerFactor.h>
|
|
#include <gtsam/nonlinear/Values.h>
|
|
#include <gtsam/inference/Symbol.h>
|
|
#include <gtsam/inference/Key.h>
|
|
#include <gtsam/inference/Ordering.h>
|
|
#include <gtsam/inference/JunctionTree.h>
|
|
#include <gtsam/geometry/Pose3.h>
|
|
#include <gtsam/base/TestableAssertions.h>
|
|
#include <CppUnitLite/TestHarness.h>
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
|
|
namespace {
|
|
|
|
// Set up initial pose, odometry difference, loop closure difference, and initialization errors
|
|
const Pose3 poseInitial;
|
|
const Pose3 poseOdometry( Rot3::RzRyRx(Vector3(0.05, 0.10, -0.75)), Point3(1.0, -0.25, 0.10) );
|
|
const Pose3 poseError( Rot3::RzRyRx(Vector3(0.01, 0.02, -0.1)), Point3(0.05, -0.05, 0.02) );
|
|
|
|
// Set up noise models for the factors
|
|
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
|
const SharedDiagonal noiseOdometery = noiseModel::Diagonal::Sigmas((Vector(6) << 0.1, 0.1, 0.1, 0.5, 0.5, 0.5).finished());
|
|
const SharedDiagonal noiseLoop = noiseModel::Diagonal::Sigmas((Vector(6) << 0.25, 0.25, 0.25, 1.0, 1.0, 1.0).finished());
|
|
|
|
/* ************************************************************************* */
|
|
Values BatchOptimize(const NonlinearFactorGraph& graph, const Values& theta, int maxIter = 100) {
|
|
|
|
// Create an L-M optimizer
|
|
ISAM2Params parameters;
|
|
parameters.optimizationParams = ISAM2DoglegParams();
|
|
// parameters.maxIterations = maxIter;
|
|
// parameters.lambdaUpperBound = 1;
|
|
// parameters.lambdaInitial = 1;
|
|
// parameters.verbosity = NonlinearOptimizerParams::ERROR;
|
|
// parameters.verbosityLM = ISAM2Params::DAMPED;
|
|
// parameters.linearSolverType = NonlinearOptimizerParams::MULTIFRONTAL_QR;
|
|
|
|
ISAM2 optimizer(parameters);
|
|
optimizer.update( graph, theta );
|
|
Values result = optimizer.calculateEstimate();
|
|
return result;
|
|
|
|
}
|
|
|
|
} // end namespace
|
|
|
|
|
|
|
|
|
|
/* ************************************************************************* */
|
|
TEST( ConcurrentIncrementalSmootherDL, equals )
|
|
{
|
|
// TODO: Test 'equals' more vigorously
|
|
|
|
// Create a Concurrent Batch Smoother
|
|
ISAM2Params parameters1;
|
|
parameters1.optimizationParams = ISAM2DoglegParams();
|
|
ConcurrentIncrementalSmoother smoother1(parameters1);
|
|
|
|
// Create an identical Concurrent Batch Smoother
|
|
ISAM2Params parameters2;
|
|
parameters2.optimizationParams = ISAM2DoglegParams();
|
|
ConcurrentIncrementalSmoother smoother2(parameters2);
|
|
|
|
// Create a different Concurrent Batch Smoother
|
|
ISAM2Params parameters3;
|
|
parameters3.optimizationParams = ISAM2DoglegParams();
|
|
// parameters3.maxIterations = 1;
|
|
ConcurrentIncrementalSmoother smoother3(parameters3);
|
|
|
|
CHECK(assert_equal(smoother1, smoother1));
|
|
CHECK(assert_equal(smoother1, smoother2));
|
|
// CHECK(assert_inequal(smoother1, smoother3));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( ConcurrentIncrementalSmootherDL, getFactors )
|
|
{
|
|
// Create a Concurrent Batch Smoother
|
|
ISAM2Params parameters;
|
|
parameters.optimizationParams = ISAM2DoglegParams();
|
|
ConcurrentIncrementalSmoother smoother(parameters);
|
|
|
|
// Expected graph is empty
|
|
NonlinearFactorGraph expected1;
|
|
// Get actual graph
|
|
NonlinearFactorGraph actual1 = smoother.getFactors();
|
|
// Check
|
|
CHECK(assert_equal(expected1, actual1));
|
|
|
|
// Add some factors to the smoother
|
|
NonlinearFactorGraph newFactors1;
|
|
newFactors1.addPrior(1, poseInitial, noisePrior);
|
|
newFactors1.push_back(BetweenFactor<Pose3>(1, 2, poseOdometry, noiseOdometery));
|
|
Values newValues1;
|
|
newValues1.insert(1, Pose3());
|
|
newValues1.insert(2, newValues1.at<Pose3>(1).compose(poseOdometry));
|
|
smoother.update(newFactors1, newValues1);
|
|
|
|
// Expected graph
|
|
NonlinearFactorGraph expected2;
|
|
expected2.push_back(newFactors1);
|
|
// Get actual graph
|
|
NonlinearFactorGraph actual2 = smoother.getFactors();
|
|
// Check
|
|
CHECK(assert_equal(expected2, actual2));
|
|
|
|
// Add some more factors to the smoother
|
|
NonlinearFactorGraph newFactors2;
|
|
newFactors2.push_back(BetweenFactor<Pose3>(2, 3, poseOdometry, noiseOdometery));
|
|
newFactors2.push_back(BetweenFactor<Pose3>(3, 4, poseOdometry, noiseOdometery));
|
|
Values newValues2;
|
|
newValues2.insert(3, newValues1.at<Pose3>(2).compose(poseOdometry));
|
|
newValues2.insert(4, newValues2.at<Pose3>(3).compose(poseOdometry));
|
|
smoother.update(newFactors2, newValues2);
|
|
|
|
// Expected graph
|
|
NonlinearFactorGraph expected3;
|
|
expected3.push_back(newFactors1);
|
|
expected3.push_back(newFactors2);
|
|
// Get actual graph
|
|
NonlinearFactorGraph actual3 = smoother.getFactors();
|
|
// Check
|
|
CHECK(assert_equal(expected3, actual3));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( ConcurrentIncrementalSmootherDL, getLinearizationPoint )
|
|
{
|
|
// Create a Concurrent Batch Smoother
|
|
ISAM2Params parameters;
|
|
parameters.optimizationParams = ISAM2DoglegParams();
|
|
ConcurrentIncrementalSmoother smoother(parameters);
|
|
|
|
// Expected values is empty
|
|
Values expected1;
|
|
// Get Linearization Point
|
|
Values actual1 = smoother.getLinearizationPoint();
|
|
// Check
|
|
CHECK(assert_equal(expected1, actual1));
|
|
|
|
// Add some factors to the smoother
|
|
NonlinearFactorGraph newFactors1;
|
|
newFactors1.addPrior(1, poseInitial, noisePrior);
|
|
newFactors1.push_back(BetweenFactor<Pose3>(1, 2, poseOdometry, noiseOdometery));
|
|
Values newValues1;
|
|
newValues1.insert(1, Pose3());
|
|
newValues1.insert(2, newValues1.at<Pose3>(1).compose(poseOdometry));
|
|
smoother.update(newFactors1, newValues1);
|
|
|
|
// Expected values is equivalent to the provided values only because the provided linearization points were optimal
|
|
Values expected2;
|
|
expected2.insert(newValues1);
|
|
// Get actual linearization point
|
|
Values actual2 = smoother.getLinearizationPoint();
|
|
// Check
|
|
CHECK(assert_equal(expected2, actual2));
|
|
|
|
// Add some more factors to the smoother
|
|
NonlinearFactorGraph newFactors2;
|
|
newFactors2.push_back(BetweenFactor<Pose3>(2, 3, poseOdometry, noiseOdometery));
|
|
newFactors2.push_back(BetweenFactor<Pose3>(3, 4, poseOdometry, noiseOdometery));
|
|
Values newValues2;
|
|
newValues2.insert(3, newValues1.at<Pose3>(2).compose(poseOdometry));
|
|
newValues2.insert(4, newValues2.at<Pose3>(3).compose(poseOdometry));
|
|
smoother.update(newFactors2, newValues2);
|
|
|
|
// Expected values is equivalent to the provided values only because the provided linearization points were optimal
|
|
Values expected3;
|
|
expected3.insert(newValues1);
|
|
expected3.insert(newValues2);
|
|
// Get actual linearization point
|
|
Values actual3 = smoother.getLinearizationPoint();
|
|
// Check
|
|
CHECK(assert_equal(expected3, actual3));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( ConcurrentIncrementalSmootherDL, getDelta )
|
|
{
|
|
// TODO: Think about how to check ordering...
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( ConcurrentIncrementalSmootherDL, calculateEstimate )
|
|
{
|
|
// Create a Concurrent Batch Smoother
|
|
ISAM2Params parameters;
|
|
parameters.optimizationParams = ISAM2DoglegParams();
|
|
ConcurrentIncrementalSmoother smoother(parameters);
|
|
|
|
// Expected values is empty
|
|
Values expected1;
|
|
// Get Linearization Point
|
|
Values actual1 = smoother.calculateEstimate();
|
|
// Check
|
|
CHECK(assert_equal(expected1, actual1));
|
|
|
|
// Add some factors to the smoother
|
|
NonlinearFactorGraph newFactors2;
|
|
newFactors2.addPrior(1, poseInitial, noisePrior);
|
|
newFactors2.push_back(BetweenFactor<Pose3>(1, 2, poseOdometry, noiseOdometery));
|
|
Values newValues2;
|
|
newValues2.insert(1, Pose3().compose(poseError));
|
|
newValues2.insert(2, newValues2.at<Pose3>(1).compose(poseOdometry).compose(poseError));
|
|
smoother.update(newFactors2, newValues2);
|
|
|
|
// Expected values from full batch optimization
|
|
NonlinearFactorGraph allFactors2;
|
|
allFactors2.push_back(newFactors2);
|
|
Values allValues2;
|
|
allValues2.insert(newValues2);
|
|
Values expected2 = BatchOptimize(allFactors2, allValues2);
|
|
// Get actual linearization point
|
|
Values actual2 = smoother.calculateEstimate();
|
|
// Check
|
|
CHECK(assert_equal(expected2, actual2, 1e-6));
|
|
|
|
// Add some more factors to the smoother
|
|
NonlinearFactorGraph newFactors3;
|
|
newFactors3.push_back(BetweenFactor<Pose3>(2, 3, poseOdometry, noiseOdometery));
|
|
newFactors3.push_back(BetweenFactor<Pose3>(3, 4, poseOdometry, noiseOdometery));
|
|
Values newValues3;
|
|
newValues3.insert(3, newValues2.at<Pose3>(2).compose(poseOdometry).compose(poseError));
|
|
newValues3.insert(4, newValues3.at<Pose3>(3).compose(poseOdometry).compose(poseError));
|
|
smoother.update(newFactors3, newValues3);
|
|
|
|
// Expected values from full batch optimization
|
|
NonlinearFactorGraph allFactors3;
|
|
allFactors3.push_back(newFactors2);
|
|
allFactors3.push_back(newFactors3);
|
|
Values allValues3;
|
|
allValues3.insert(newValues2);
|
|
allValues3.insert(newValues3);
|
|
Values expected3 = BatchOptimize(allFactors3, allValues3);
|
|
// Get actual linearization point
|
|
Values actual3 = smoother.calculateEstimate();
|
|
// Check
|
|
CHECK(assert_equal(expected3, actual3, 1e-6));
|
|
|
|
// Also check the single-variable version
|
|
Pose3 expectedPose1 = expected3.at<Pose3>(1);
|
|
Pose3 expectedPose2 = expected3.at<Pose3>(2);
|
|
Pose3 expectedPose3 = expected3.at<Pose3>(3);
|
|
Pose3 expectedPose4 = expected3.at<Pose3>(4);
|
|
// Also check the single-variable version
|
|
Pose3 actualPose1 = smoother.calculateEstimate<Pose3>(1);
|
|
Pose3 actualPose2 = smoother.calculateEstimate<Pose3>(2);
|
|
Pose3 actualPose3 = smoother.calculateEstimate<Pose3>(3);
|
|
Pose3 actualPose4 = smoother.calculateEstimate<Pose3>(4);
|
|
// Check
|
|
CHECK(assert_equal(expectedPose1, actualPose1, 1e-6));
|
|
CHECK(assert_equal(expectedPose2, actualPose2, 1e-6));
|
|
CHECK(assert_equal(expectedPose3, actualPose3, 1e-6));
|
|
CHECK(assert_equal(expectedPose4, actualPose4, 1e-6));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( ConcurrentIncrementalSmootherDL, update_empty )
|
|
{
|
|
// Create a set of optimizer parameters
|
|
ISAM2Params parameters;
|
|
parameters.optimizationParams = ISAM2DoglegParams();
|
|
// Create a Concurrent Batch Smoother
|
|
ConcurrentIncrementalSmoother smoother(parameters);
|
|
|
|
// Call update
|
|
smoother.update();
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( ConcurrentIncrementalSmootherDL, update_multiple )
|
|
{
|
|
// Create a Concurrent Batch Smoother
|
|
ISAM2Params parameters;
|
|
parameters.optimizationParams = ISAM2DoglegParams();
|
|
ConcurrentIncrementalSmoother smoother(parameters);
|
|
|
|
// Expected values is empty
|
|
Values expected1;
|
|
// Get Linearization Point
|
|
Values actual1 = smoother.calculateEstimate();
|
|
// Check
|
|
CHECK(assert_equal(expected1, actual1));
|
|
|
|
// Add some factors to the smoother
|
|
NonlinearFactorGraph newFactors2;
|
|
newFactors2.addPrior(1, poseInitial, noisePrior);
|
|
newFactors2.push_back(BetweenFactor<Pose3>(1, 2, poseOdometry, noiseOdometery));
|
|
Values newValues2;
|
|
newValues2.insert(1, Pose3().compose(poseError));
|
|
newValues2.insert(2, newValues2.at<Pose3>(1).compose(poseOdometry).compose(poseError));
|
|
smoother.update(newFactors2, newValues2);
|
|
|
|
// Expected values from full batch optimization
|
|
NonlinearFactorGraph allFactors2;
|
|
allFactors2.push_back(newFactors2);
|
|
Values allValues2;
|
|
allValues2.insert(newValues2);
|
|
Values expected2 = BatchOptimize(allFactors2, allValues2);
|
|
// Get actual linearization point
|
|
Values actual2 = smoother.calculateEstimate();
|
|
// Check
|
|
CHECK(assert_equal(expected2, actual2, 1e-6));
|
|
|
|
// Add some more factors to the smoother
|
|
NonlinearFactorGraph newFactors3;
|
|
newFactors3.push_back(BetweenFactor<Pose3>(2, 3, poseOdometry, noiseOdometery));
|
|
newFactors3.push_back(BetweenFactor<Pose3>(3, 4, poseOdometry, noiseOdometery));
|
|
Values newValues3;
|
|
newValues3.insert(3, newValues2.at<Pose3>(2).compose(poseOdometry).compose(poseError));
|
|
newValues3.insert(4, newValues3.at<Pose3>(3).compose(poseOdometry).compose(poseError));
|
|
smoother.update(newFactors3, newValues3);
|
|
|
|
// Expected values from full batch optimization
|
|
NonlinearFactorGraph allFactors3;
|
|
allFactors3.push_back(newFactors2);
|
|
allFactors3.push_back(newFactors3);
|
|
Values allValues3;
|
|
allValues3.insert(newValues2);
|
|
allValues3.insert(newValues3);
|
|
Values expected3 = BatchOptimize(allFactors3, allValues3);
|
|
// Get actual linearization point
|
|
Values actual3 = smoother.calculateEstimate();
|
|
// Check
|
|
CHECK(assert_equal(expected3, actual3, 1e-6));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( ConcurrentIncrementalSmootherDL, synchronize_empty )
|
|
{
|
|
// Create a set of optimizer parameters
|
|
ISAM2Params parameters;
|
|
parameters.optimizationParams = ISAM2DoglegParams();
|
|
// Create a Concurrent Batch Smoother
|
|
ConcurrentIncrementalSmoother smoother(parameters);
|
|
|
|
// Create empty containers *from* the filter
|
|
NonlinearFactorGraph smootherFactors, filterSumarization;
|
|
Values smootherValues, filterSeparatorValues;
|
|
|
|
// Create expected values: these will be empty for this case
|
|
NonlinearFactorGraph expectedSmootherSummarization;
|
|
Values expectedSmootherSeparatorValues;
|
|
|
|
// Synchronize
|
|
NonlinearFactorGraph actualSmootherSummarization;
|
|
Values actualSmootherSeparatorValues;
|
|
smoother.presync();
|
|
smoother.getSummarizedFactors(actualSmootherSummarization, actualSmootherSeparatorValues);
|
|
smoother.synchronize(smootherFactors, smootherValues, filterSumarization, filterSeparatorValues);
|
|
smoother.postsync();
|
|
|
|
// Check
|
|
CHECK(assert_equal(expectedSmootherSummarization, actualSmootherSummarization, 1e-6));
|
|
CHECK(assert_equal(expectedSmootherSeparatorValues, actualSmootherSeparatorValues, 1e-6));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( ConcurrentIncrementalSmootherDL, synchronize_1 )
|
|
{
|
|
// Create a set of optimizer parameters
|
|
ISAM2Params parameters;
|
|
parameters.optimizationParams = ISAM2DoglegParams();
|
|
// parameters.maxIterations = 1;
|
|
|
|
// Create a Concurrent Batch Smoother
|
|
ConcurrentIncrementalSmoother smoother(parameters);
|
|
|
|
// Create a simple separator *from* the filter
|
|
NonlinearFactorGraph smootherFactors, filterSumarization;
|
|
Values smootherValues, filterSeparatorValues;
|
|
filterSeparatorValues.insert(1, Pose3().compose(poseError));
|
|
filterSeparatorValues.insert(2, filterSeparatorValues.at<Pose3>(1).compose(poseOdometry).compose(poseError));
|
|
|
|
filterSumarization.push_back(LinearContainerFactor(PriorFactor<Pose3>(1, poseInitial, noisePrior).linearize(filterSeparatorValues), filterSeparatorValues));
|
|
filterSumarization.push_back(LinearContainerFactor(BetweenFactor<Pose3>(1, 2, poseOdometry, noiseOdometery).linearize(filterSeparatorValues), filterSeparatorValues));
|
|
|
|
// Create expected values: the smoother output will be empty for this case
|
|
NonlinearFactorGraph expectedSmootherSummarization;
|
|
Values expectedSmootherSeparatorValues;
|
|
|
|
NonlinearFactorGraph actualSmootherSummarization;
|
|
Values actualSmootherSeparatorValues;
|
|
smoother.presync();
|
|
smoother.getSummarizedFactors(actualSmootherSummarization, actualSmootherSeparatorValues);
|
|
smoother.synchronize(smootherFactors, smootherValues, filterSumarization, filterSeparatorValues);
|
|
smoother.postsync();
|
|
|
|
// Check
|
|
CHECK(assert_equal(expectedSmootherSummarization, actualSmootherSummarization, 1e-6));
|
|
CHECK(assert_equal(expectedSmootherSeparatorValues, actualSmootherSeparatorValues, 1e-6));
|
|
|
|
|
|
// Update the smoother
|
|
smoother.update();
|
|
|
|
// Check the factor graph. It should contain only the filter-provided factors
|
|
NonlinearFactorGraph expectedFactorGraph = filterSumarization;
|
|
NonlinearFactorGraph actualFactorGraph = smoother.getFactors();
|
|
CHECK(assert_equal(expectedFactorGraph, actualFactorGraph, 1e-6));
|
|
|
|
// Check the optimized value of smoother state
|
|
NonlinearFactorGraph allFactors;
|
|
allFactors.push_back(filterSumarization);
|
|
Values allValues;
|
|
allValues.insert(filterSeparatorValues);
|
|
Values expectedValues = BatchOptimize(allFactors, allValues,1);
|
|
Values actualValues = smoother.calculateEstimate();
|
|
CHECK(assert_equal(expectedValues, actualValues, 1e-6));
|
|
|
|
// Check the linearization point. The separator should remain identical to the filter provided values
|
|
Values expectedLinearizationPoint = filterSeparatorValues;
|
|
Values actualLinearizationPoint = smoother.getLinearizationPoint();
|
|
CHECK(assert_equal(expectedLinearizationPoint, actualLinearizationPoint, 1e-6));
|
|
}
|
|
|
|
|
|
/* ************************************************************************* */
|
|
TEST( ConcurrentIncrementalSmootherDL, synchronize_2 )
|
|
{
|
|
// Create a set of optimizer parameters
|
|
ISAM2Params parameters;
|
|
parameters.optimizationParams = ISAM2DoglegParams();
|
|
// parameters.maxIterations = 1;
|
|
// parameters.lambdaUpperBound = 1;
|
|
// parameters.lambdaInitial = 1;
|
|
// parameters.verbosity = NonlinearOptimizerParams::ERROR;
|
|
// parameters.verbosityLM = ISAM2Params::DAMPED;
|
|
|
|
// Create a Concurrent Batch Smoother
|
|
ConcurrentIncrementalSmoother smoother(parameters);
|
|
|
|
// Create a separator and cached smoother factors *from* the filter
|
|
NonlinearFactorGraph smootherFactors, filterSumarization;
|
|
Values smootherValues, filterSeparatorValues;
|
|
|
|
filterSeparatorValues.insert(1, Pose3().compose(poseError));
|
|
filterSeparatorValues.insert(2, filterSeparatorValues.at<Pose3>(1).compose(poseOdometry).compose(poseError));
|
|
filterSumarization.push_back(LinearContainerFactor(PriorFactor<Pose3>(1, poseInitial, noisePrior).linearize(filterSeparatorValues), filterSeparatorValues));
|
|
filterSumarization.push_back(LinearContainerFactor(BetweenFactor<Pose3>(1, 2, poseOdometry, noiseOdometery).linearize(filterSeparatorValues), filterSeparatorValues));
|
|
smootherFactors.push_back(BetweenFactor<Pose3>(2, 3, poseOdometry, noiseOdometery));
|
|
smootherFactors.push_back(BetweenFactor<Pose3>(3, 4, poseOdometry, noiseOdometery));
|
|
smootherValues.insert(3, filterSeparatorValues.at<Pose3>(2).compose(poseOdometry).compose(poseError));
|
|
smootherValues.insert(4, smootherValues.at<Pose3>(3).compose(poseOdometry).compose(poseError));
|
|
|
|
// Create expected values: the smoother output will be empty for this case
|
|
NonlinearFactorGraph expectedSmootherSummarization;
|
|
Values expectedSmootherSeparatorValues;
|
|
|
|
NonlinearFactorGraph actualSmootherSummarization;
|
|
Values actualSmootherSeparatorValues;
|
|
smoother.presync();
|
|
smoother.getSummarizedFactors(actualSmootherSummarization, actualSmootherSeparatorValues);
|
|
smoother.synchronize(smootherFactors, smootherValues, filterSumarization, filterSeparatorValues);
|
|
smoother.postsync();
|
|
|
|
// Check
|
|
CHECK(assert_equal(expectedSmootherSummarization, actualSmootherSummarization, 1e-6));
|
|
CHECK(assert_equal(expectedSmootherSeparatorValues, actualSmootherSeparatorValues, 1e-6));
|
|
|
|
|
|
// Update the smoother
|
|
smoother.update();
|
|
|
|
// Check the factor graph. It should contain only the filter-provided factors
|
|
NonlinearFactorGraph expectedFactorGraph;
|
|
expectedFactorGraph.push_back(smootherFactors);
|
|
expectedFactorGraph.push_back(filterSumarization);
|
|
NonlinearFactorGraph actualFactorGraph = smoother.getFactors();
|
|
CHECK(assert_equal(expectedFactorGraph, actualFactorGraph, 1e-6));
|
|
|
|
// Check the optimized value of smoother state
|
|
NonlinearFactorGraph allFactors;
|
|
allFactors.push_back(filterSumarization);
|
|
allFactors.push_back(smootherFactors);
|
|
Values allValues;
|
|
allValues.insert(filterSeparatorValues);
|
|
allValues.insert(smootherValues);
|
|
// allValues.print("Batch LinPoint:\n");
|
|
Values expectedValues = BatchOptimize(allFactors, allValues, 1);
|
|
Values actualValues = smoother.calculateEstimate();
|
|
CHECK(assert_equal(expectedValues, actualValues, 1e-6));
|
|
|
|
// Check the linearization point. The separator should remain identical to the filter provided values, but the others should be the optimal values
|
|
// Isam2 is changing internally the linearization points, so the following check is done only on the separator variables
|
|
// Values expectedLinearizationPoint = BatchOptimize(allFactors, allValues, 1);
|
|
Values expectedLinearizationPoint = filterSeparatorValues;
|
|
Values actualLinearizationPoint;
|
|
for(const auto key: filterSeparatorValues.keys()) {
|
|
actualLinearizationPoint.insert(key, smoother.getLinearizationPoint().at(key));
|
|
}
|
|
CHECK(assert_equal(expectedLinearizationPoint, actualLinearizationPoint, 1e-6));
|
|
}
|
|
|
|
|
|
|
|
/* ************************************************************************* */
|
|
TEST( ConcurrentIncrementalSmootherDL, synchronize_3 )
|
|
{
|
|
// Create a set of optimizer parameters
|
|
ISAM2Params parameters;
|
|
parameters.optimizationParams = ISAM2DoglegParams();
|
|
// parameters.maxIterations = 1;
|
|
// parameters.lambdaUpperBound = 1;
|
|
// parameters.lambdaInitial = 1;
|
|
// parameters.verbosity = NonlinearOptimizerParams::ERROR;
|
|
// parameters.verbosityLM = ISAM2Params::DAMPED;
|
|
|
|
// Create a Concurrent Batch Smoother
|
|
ConcurrentIncrementalSmoother smoother(parameters);
|
|
|
|
// Create a separator and cached smoother factors *from* the filter
|
|
NonlinearFactorGraph smootherFactors, filterSumarization;
|
|
Values smootherValues, filterSeparatorValues;
|
|
|
|
filterSeparatorValues.insert(1, Pose3().compose(poseError));
|
|
filterSeparatorValues.insert(2, filterSeparatorValues.at<Pose3>(1).compose(poseOdometry).compose(poseError));
|
|
filterSumarization.push_back(LinearContainerFactor(PriorFactor<Pose3>(1, poseInitial, noisePrior).linearize(filterSeparatorValues), filterSeparatorValues));
|
|
filterSumarization.push_back(LinearContainerFactor(BetweenFactor<Pose3>(1, 2, poseOdometry, noiseOdometery).linearize(filterSeparatorValues), filterSeparatorValues));
|
|
smootherFactors.push_back(BetweenFactor<Pose3>(2, 3, poseOdometry, noiseOdometery));
|
|
smootherFactors.push_back(BetweenFactor<Pose3>(3, 4, poseOdometry, noiseOdometery));
|
|
smootherFactors.addPrior(4, poseInitial, noisePrior);
|
|
smootherValues.insert(3, filterSeparatorValues.at<Pose3>(2).compose(poseOdometry).compose(poseError));
|
|
smootherValues.insert(4, smootherValues.at<Pose3>(3).compose(poseOdometry).compose(poseError));
|
|
|
|
// Create expected values: the smoother output will be empty for this case
|
|
NonlinearFactorGraph expectedSmootherSummarization;
|
|
Values expectedSmootherSeparatorValues;
|
|
|
|
NonlinearFactorGraph actualSmootherSummarization;
|
|
Values actualSmootherSeparatorValues;
|
|
smoother.presync();
|
|
smoother.getSummarizedFactors(actualSmootherSummarization, actualSmootherSeparatorValues);
|
|
smoother.synchronize(smootherFactors, smootherValues, filterSumarization, filterSeparatorValues);
|
|
smoother.postsync();
|
|
|
|
// Check
|
|
CHECK(assert_equal(expectedSmootherSummarization, actualSmootherSummarization, 1e-6));
|
|
CHECK(assert_equal(expectedSmootherSeparatorValues, actualSmootherSeparatorValues, 1e-6));
|
|
|
|
|
|
// Update the smoother
|
|
smoother.update();
|
|
|
|
smoother.presync();
|
|
smoother.getSummarizedFactors(actualSmootherSummarization, actualSmootherSeparatorValues);
|
|
|
|
// Check the optimized value of smoother state
|
|
NonlinearFactorGraph allFactors = smootherFactors;
|
|
Values allValues = smoother.getLinearizationPoint();
|
|
|
|
GaussianFactorGraph::shared_ptr LinFactorGraph = allFactors.linearize(allValues);
|
|
// GaussianSequentialSolver GSS = GaussianSequentialSolver(*LinFactorGraph);
|
|
// GaussianBayesNet::shared_ptr GBNsptr = GSS.eliminate();
|
|
|
|
KeySet allkeys = LinFactorGraph->keys();
|
|
for(const auto key: filterSeparatorValues.keys()) {
|
|
allkeys.erase(key);
|
|
}
|
|
KeyVector variables(allkeys.begin(), allkeys.end());
|
|
std::pair<GaussianBayesNet::shared_ptr, GaussianFactorGraph::shared_ptr> result = LinFactorGraph->eliminatePartialSequential(variables, EliminateCholesky);
|
|
|
|
expectedSmootherSummarization.resize(0);
|
|
for(const GaussianFactor::shared_ptr& factor: *result.second) {
|
|
expectedSmootherSummarization.push_back(LinearContainerFactor(factor, allValues));
|
|
}
|
|
|
|
CHECK(assert_equal(expectedSmootherSummarization, actualSmootherSummarization, 1e-6));
|
|
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
|
|
/* ************************************************************************* */
|