443 lines
15 KiB
C++
443 lines
15 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file BatchFixedLagSmoother.cpp
|
|
* @brief An LM-based fixed-lag smoother.
|
|
*
|
|
* @author Michael Kaess, Stephen Williams
|
|
* @date Oct 14, 2012
|
|
*/
|
|
|
|
#include <gtsam_unstable/nonlinear/BatchFixedLagSmoother.h>
|
|
#include <gtsam/nonlinear/LinearContainerFactor.h>
|
|
#include <gtsam/linear/GaussianJunctionTree.h>
|
|
#include <gtsam/linear/GaussianFactorGraph.h>
|
|
#include <gtsam/linear/GaussianFactor.h>
|
|
|
|
using namespace std;
|
|
|
|
namespace gtsam {
|
|
|
|
/* ************************************************************************* */
|
|
void BatchFixedLagSmoother::print(const string& s,
|
|
const KeyFormatter& keyFormatter) const {
|
|
FixedLagSmoother::print(s, keyFormatter);
|
|
// TODO: What else to print?
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
bool BatchFixedLagSmoother::equals(const FixedLagSmoother& rhs,
|
|
double tol) const {
|
|
const BatchFixedLagSmoother* e =
|
|
dynamic_cast<const BatchFixedLagSmoother*>(&rhs);
|
|
return e != nullptr && FixedLagSmoother::equals(*e, tol)
|
|
&& factors_.equals(e->factors_, tol) && theta_.equals(e->theta_, tol);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Matrix BatchFixedLagSmoother::marginalCovariance(Key key) const {
|
|
throw runtime_error(
|
|
"BatchFixedLagSmoother::marginalCovariance not implemented");
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
FixedLagSmoother::Result BatchFixedLagSmoother::update(
|
|
const NonlinearFactorGraph& newFactors, const Values& newTheta,
|
|
const KeyTimestampMap& timestamps, const FactorIndices& factorsToRemove) {
|
|
|
|
// Update all of the internal variables with the new information
|
|
gttic(augment_system);
|
|
// Add the new variables to theta
|
|
theta_.insert(newTheta);
|
|
// Add new variables to the end of the ordering
|
|
for (const auto key : newTheta.keys()) {
|
|
ordering_.push_back(key);
|
|
}
|
|
// Augment Delta
|
|
delta_.insert(newTheta.zeroVectors());
|
|
|
|
// Add the new factors to the graph, updating the variable index
|
|
insertFactors(newFactors);
|
|
gttoc(augment_system);
|
|
|
|
// remove factors in factorToRemove
|
|
for(const size_t i : factorsToRemove){
|
|
if(factors_[i])
|
|
factors_[i].reset();
|
|
}
|
|
|
|
// Update the Timestamps associated with the factor keys
|
|
updateKeyTimestampMap(timestamps);
|
|
|
|
// Get current timestamp
|
|
double current_timestamp = getCurrentTimestamp();
|
|
|
|
// Find the set of variables to be marginalized out
|
|
KeyVector marginalizableKeys = findKeysBefore(
|
|
current_timestamp - smootherLag_);
|
|
|
|
// Reorder
|
|
gttic(reorder);
|
|
reorder(marginalizableKeys);
|
|
gttoc(reorder);
|
|
|
|
// Optimize
|
|
gttic(optimize);
|
|
Result result;
|
|
if (factors_.size() > 0) {
|
|
result = optimize();
|
|
}
|
|
gttoc(optimize);
|
|
|
|
// Marginalize out old variables.
|
|
gttic(marginalize);
|
|
if (marginalizableKeys.size() > 0) {
|
|
marginalize(marginalizableKeys);
|
|
}
|
|
gttoc(marginalize);
|
|
|
|
return result;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void BatchFixedLagSmoother::insertFactors(
|
|
const NonlinearFactorGraph& newFactors) {
|
|
for(const auto& factor: newFactors) {
|
|
Key index;
|
|
// Insert the factor into an existing hole in the factor graph, if possible
|
|
if (availableSlots_.size() > 0) {
|
|
index = availableSlots_.front();
|
|
availableSlots_.pop();
|
|
factors_.replace(index, factor);
|
|
} else {
|
|
index = factors_.size();
|
|
factors_.push_back(factor);
|
|
}
|
|
// Update the FactorIndex
|
|
for(Key key: *factor) {
|
|
factorIndex_[key].insert(index);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void BatchFixedLagSmoother::removeFactors(
|
|
const set<size_t>& deleteFactors) {
|
|
for(size_t slot: deleteFactors) {
|
|
if (factors_.at(slot)) {
|
|
// Remove references to this factor from the FactorIndex
|
|
for(Key key: *(factors_.at(slot))) {
|
|
factorIndex_[key].erase(slot);
|
|
}
|
|
// Remove the factor from the factor graph
|
|
factors_.remove(slot);
|
|
// Add the factor's old slot to the list of available slots
|
|
availableSlots_.push(slot);
|
|
} else {
|
|
// TODO: Throw an error??
|
|
cout << "Attempting to remove a factor from slot " << slot
|
|
<< ", but it is already nullptr." << endl;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void BatchFixedLagSmoother::eraseKeys(const KeyVector& keys) {
|
|
|
|
for(Key key: keys) {
|
|
// Erase the key from the values
|
|
theta_.erase(key);
|
|
|
|
// Erase the key from the factor index
|
|
factorIndex_.erase(key);
|
|
|
|
// Erase the key from the set of linearized keys
|
|
if (linearValues_.exists(key)) {
|
|
linearValues_.erase(key);
|
|
}
|
|
}
|
|
|
|
eraseKeyTimestampMap(keys);
|
|
|
|
// Remove marginalized keys from the ordering and delta
|
|
for(Key key: keys) {
|
|
ordering_.erase(find(ordering_.begin(), ordering_.end(), key));
|
|
delta_.erase(key);
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void BatchFixedLagSmoother::reorder(const KeyVector& marginalizeKeys) {
|
|
// COLAMD groups will be used to place marginalize keys in Group 0, and everything else in Group 1
|
|
ordering_ = Ordering::ColamdConstrainedFirst(factors_, marginalizeKeys);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
FixedLagSmoother::Result BatchFixedLagSmoother::optimize() {
|
|
|
|
// Create output result structure
|
|
Result result;
|
|
result.nonlinearVariables = theta_.size() - linearValues_.size();
|
|
result.linearVariables = linearValues_.size();
|
|
|
|
// Set optimization parameters
|
|
double lambda = parameters_.lambdaInitial;
|
|
double lambdaFactor = parameters_.lambdaFactor;
|
|
double lambdaUpperBound = parameters_.lambdaUpperBound;
|
|
double lambdaLowerBound = 1.0e-10;
|
|
size_t maxIterations = parameters_.maxIterations;
|
|
double relativeErrorTol = parameters_.relativeErrorTol;
|
|
double absoluteErrorTol = parameters_.absoluteErrorTol;
|
|
double errorTol = parameters_.errorTol;
|
|
|
|
// Create a Values that holds the current evaluation point
|
|
Values evalpoint = theta_.retract(delta_);
|
|
result.error = factors_.error(evalpoint);
|
|
|
|
// check if we're already close enough
|
|
if (result.error <= errorTol) {
|
|
return result;
|
|
}
|
|
|
|
// Use a custom optimization loop so the linearization points can be controlled
|
|
double previousError;
|
|
VectorValues newDelta;
|
|
do {
|
|
previousError = result.error;
|
|
|
|
// Do next iteration
|
|
gttic(optimizer_iteration);
|
|
{
|
|
// Linearize graph around the linearization point
|
|
GaussianFactorGraph linearFactorGraph = *factors_.linearize(theta_);
|
|
|
|
// Keep increasing lambda until we make make progress
|
|
while (true) {
|
|
|
|
// Add prior factors at the current solution
|
|
gttic(damp);
|
|
GaussianFactorGraph dampedFactorGraph(linearFactorGraph);
|
|
dampedFactorGraph.reserve(linearFactorGraph.size() + delta_.size());
|
|
{
|
|
// for each of the variables, add a prior at the current solution
|
|
double sigma = 1.0 / sqrt(lambda);
|
|
for(const auto& key_value: delta_) {
|
|
size_t dim = key_value.second.size();
|
|
Matrix A = Matrix::Identity(dim, dim);
|
|
Vector b = key_value.second;
|
|
SharedDiagonal model = noiseModel::Isotropic::Sigma(dim, sigma);
|
|
GaussianFactor::shared_ptr prior(
|
|
new JacobianFactor(key_value.first, A, b, model));
|
|
dampedFactorGraph.push_back(prior);
|
|
}
|
|
}
|
|
gttoc(damp);
|
|
result.intermediateSteps++;
|
|
|
|
gttic(solve);
|
|
// Solve Damped Gaussian Factor Graph
|
|
newDelta = dampedFactorGraph.optimize(ordering_,
|
|
parameters_.getEliminationFunction());
|
|
// update the evalpoint with the new delta
|
|
evalpoint = theta_.retract(newDelta);
|
|
gttoc(solve);
|
|
|
|
// Evaluate the new error
|
|
gttic(compute_error);
|
|
double error = factors_.error(evalpoint);
|
|
gttoc(compute_error);
|
|
|
|
if (error < result.error) {
|
|
// Keep this change
|
|
// Update the error value
|
|
result.error = error;
|
|
// Update the linearization point
|
|
theta_ = evalpoint;
|
|
// Reset the deltas to zeros
|
|
delta_.setZero();
|
|
// Put the linearization points and deltas back for specific variables
|
|
if (enforceConsistency_ && (linearValues_.size() > 0)) {
|
|
theta_.update(linearValues_);
|
|
for(const auto key: linearValues_.keys()) {
|
|
delta_.at(key) = newDelta.at(key);
|
|
}
|
|
}
|
|
// Decrease lambda for next time
|
|
lambda /= lambdaFactor;
|
|
if (lambda < lambdaLowerBound) {
|
|
lambda = lambdaLowerBound;
|
|
}
|
|
// End this lambda search iteration
|
|
break;
|
|
} else {
|
|
// Reject this change
|
|
if (lambda >= lambdaUpperBound) {
|
|
// The maximum lambda has been used. Print a warning and end the search.
|
|
if(parameters_.verbosity >= NonlinearOptimizerParams::TERMINATION
|
|
|| parameters_.verbosityLM == LevenbergMarquardtParams::SUMMARY) {
|
|
cout
|
|
<< "Warning: Levenberg-Marquardt giving up because cannot decrease error with maximum lambda"
|
|
<< endl;
|
|
}
|
|
break;
|
|
} else {
|
|
// Increase lambda and continue searching
|
|
lambda *= lambdaFactor;
|
|
}
|
|
}
|
|
} // end while
|
|
}
|
|
gttoc(optimizer_iteration);
|
|
|
|
result.iterations++;
|
|
} while (result.iterations < maxIterations
|
|
&& !checkConvergence(relativeErrorTol, absoluteErrorTol, errorTol,
|
|
previousError, result.error, NonlinearOptimizerParams::SILENT));
|
|
|
|
return result;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void BatchFixedLagSmoother::marginalize(const KeyVector& marginalizeKeys) {
|
|
// In order to marginalize out the selected variables, the factors involved in those variables
|
|
// must be identified and removed. Also, the effect of those removed factors on the
|
|
// remaining variables needs to be accounted for. This will be done with linear container factors
|
|
// from the result of a partial elimination. This function removes the marginalized factors and
|
|
// adds the linearized factors back in.
|
|
|
|
// Identify all of the factors involving any marginalized variable. These must be removed.
|
|
set<size_t> removedFactorSlots;
|
|
const VariableIndex variableIndex(factors_);
|
|
for(Key key: marginalizeKeys) {
|
|
const auto& slots = variableIndex[key];
|
|
removedFactorSlots.insert(slots.begin(), slots.end());
|
|
}
|
|
|
|
// Add the removed factors to a factor graph
|
|
NonlinearFactorGraph removedFactors;
|
|
for(size_t slot: removedFactorSlots) {
|
|
if (factors_.at(slot)) {
|
|
removedFactors.push_back(factors_.at(slot));
|
|
}
|
|
}
|
|
|
|
// Calculate marginal factors on the remaining keys
|
|
NonlinearFactorGraph marginalFactors = CalculateMarginalFactors(
|
|
removedFactors, theta_, marginalizeKeys, parameters_.getEliminationFunction());
|
|
|
|
// Remove marginalized factors from the factor graph
|
|
removeFactors(removedFactorSlots);
|
|
|
|
// Remove marginalized keys from the system
|
|
eraseKeys(marginalizeKeys);
|
|
|
|
// Insert the new marginal factors
|
|
insertFactors(marginalFactors);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void BatchFixedLagSmoother::PrintKeySet(const set<Key>& keys,
|
|
const string& label) {
|
|
cout << label;
|
|
for(Key key: keys) {
|
|
cout << " " << DefaultKeyFormatter(key);
|
|
}
|
|
cout << endl;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void BatchFixedLagSmoother::PrintKeySet(const KeySet& keys,
|
|
const string& label) {
|
|
cout << label;
|
|
for(Key key: keys) {
|
|
cout << " " << DefaultKeyFormatter(key);
|
|
}
|
|
cout << endl;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void BatchFixedLagSmoother::PrintSymbolicFactor(
|
|
const NonlinearFactor::shared_ptr& factor) {
|
|
cout << "f(";
|
|
if (factor) {
|
|
for(Key key: factor->keys()) {
|
|
cout << " " << DefaultKeyFormatter(key);
|
|
}
|
|
} else {
|
|
cout << " nullptr";
|
|
}
|
|
cout << " )" << endl;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void BatchFixedLagSmoother::PrintSymbolicFactor(
|
|
const GaussianFactor::shared_ptr& factor) {
|
|
cout << "f(";
|
|
for(Key key: factor->keys()) {
|
|
cout << " " << DefaultKeyFormatter(key);
|
|
}
|
|
cout << " )" << endl;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void BatchFixedLagSmoother::PrintSymbolicGraph(
|
|
const NonlinearFactorGraph& graph, const string& label) {
|
|
cout << label << endl;
|
|
for(const auto& factor: graph) {
|
|
PrintSymbolicFactor(factor);
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void BatchFixedLagSmoother::PrintSymbolicGraph(const GaussianFactorGraph& graph,
|
|
const string& label) {
|
|
cout << label << endl;
|
|
for(const auto& factor: graph) {
|
|
PrintSymbolicFactor(factor);
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
GaussianFactorGraph BatchFixedLagSmoother::CalculateMarginalFactors(
|
|
const GaussianFactorGraph& graph, const KeyVector& keys,
|
|
const GaussianFactorGraph::Eliminate& eliminateFunction) {
|
|
if (keys.size() == 0) {
|
|
// There are no keys to marginalize. Simply return the input factors
|
|
return graph;
|
|
} else {
|
|
// .first is the eliminated Bayes tree, while .second is the remaining factor graph
|
|
return *graph.eliminatePartialMultifrontal(keys, eliminateFunction).second;
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
NonlinearFactorGraph BatchFixedLagSmoother::CalculateMarginalFactors(
|
|
const NonlinearFactorGraph& graph, const Values& theta, const KeyVector& keys,
|
|
const GaussianFactorGraph::Eliminate& eliminateFunction) {
|
|
if (keys.size() == 0) {
|
|
// There are no keys to marginalize. Simply return the input factors
|
|
return graph;
|
|
} else {
|
|
// Create the linear factor graph
|
|
const auto linearFactorGraph = graph.linearize(theta);
|
|
|
|
const auto marginalLinearFactors =
|
|
CalculateMarginalFactors(*linearFactorGraph, keys, eliminateFunction);
|
|
|
|
// Wrap in nonlinear container factors
|
|
return LinearContainerFactor::ConvertLinearGraph(marginalLinearFactors, theta);
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
} /// namespace gtsam
|