159 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			159 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			C++
		
	
	
/* ----------------------------------------------------------------------------
 | 
						|
 | 
						|
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
						|
 * Atlanta, Georgia 30332-0415
 | 
						|
 * All Rights Reserved
 | 
						|
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
 | 
						|
 * See LICENSE for the license information
 | 
						|
 | 
						|
 * -------------------------------------------------------------------------- */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file PartialPriorFactor.h
 | 
						|
 * @brief A simple prior factor that allows for setting a prior only on a part of linear parameters
 | 
						|
 * @author Alex Cunningham
 | 
						|
 */
 | 
						|
 | 
						|
#pragma once
 | 
						|
 | 
						|
#include <gtsam/nonlinear/NonlinearFactor.h>
 | 
						|
#include <gtsam/base/Lie.h>
 | 
						|
 | 
						|
namespace gtsam {
 | 
						|
 | 
						|
  /**
 | 
						|
   * A class for a soft partial prior on any Lie type, with a mask over Expmap
 | 
						|
   * parameters. Note that this will use Logmap() to find a tangent space parameterization
 | 
						|
   * for the variable attached, so this may fail for highly nonlinear manifolds.
 | 
						|
   *
 | 
						|
   * The prior vector used in this factor is stored in compressed form, such that
 | 
						|
   * it only contains values for measurements that are to be compared, and they are in
 | 
						|
   * the same order as VALUE::Logmap(). The provided indices will determine which components to
 | 
						|
   * extract in the error function.
 | 
						|
   *
 | 
						|
   * @tparam VALUE is the type of variable the prior effects
 | 
						|
   */
 | 
						|
  template<class VALUE>
 | 
						|
  class PartialPriorFactor: public NoiseModelFactorN<VALUE> {
 | 
						|
 | 
						|
  public:
 | 
						|
    typedef VALUE T;
 | 
						|
 | 
						|
  protected:
 | 
						|
    // Concept checks on the variable type - currently requires Lie
 | 
						|
    GTSAM_CONCEPT_LIE_TYPE(VALUE)
 | 
						|
 | 
						|
    typedef NoiseModelFactorN<VALUE> Base;
 | 
						|
    typedef PartialPriorFactor<VALUE> This;
 | 
						|
 | 
						|
    Vector prior_;                 ///< Measurement on tangent space parameters, in compressed form.
 | 
						|
    std::vector<size_t> indices_;  ///< Indices of the measured tangent space parameters.
 | 
						|
 | 
						|
    /** default constructor - only use for serialization */
 | 
						|
    PartialPriorFactor() {}
 | 
						|
 | 
						|
    /**
 | 
						|
     * constructor with just minimum requirements for a factor - allows more
 | 
						|
     * computation in the constructor.  This should only be used by subclasses
 | 
						|
     */
 | 
						|
    PartialPriorFactor(Key key, const SharedNoiseModel& model)
 | 
						|
      : Base(model, key) {}
 | 
						|
 | 
						|
  public:
 | 
						|
 | 
						|
    // Provide access to the Matrix& version of evaluateError:
 | 
						|
    using Base::evaluateError;
 | 
						|
 | 
						|
    ~PartialPriorFactor() override {}
 | 
						|
 | 
						|
    /** Single Element Constructor: Prior on a single parameter at index 'idx' in the tangent vector.*/
 | 
						|
    PartialPriorFactor(Key key, size_t idx, double prior, const SharedNoiseModel& model) :
 | 
						|
      Base(model, key),
 | 
						|
      prior_((Vector(1) << prior).finished()),
 | 
						|
      indices_(1, idx) {
 | 
						|
      assert(model->dim() == 1);
 | 
						|
    }
 | 
						|
 | 
						|
    /** Indices Constructor: Specify the relevant measured indices in the tangent vector.*/
 | 
						|
    PartialPriorFactor(Key key, const std::vector<size_t>& indices, const Vector& prior,
 | 
						|
        const SharedNoiseModel& model) :
 | 
						|
        Base(model, key),
 | 
						|
        prior_(prior),
 | 
						|
        indices_(indices) {
 | 
						|
      assert((size_t)prior_.size() == indices_.size());
 | 
						|
      assert(model->dim() == (size_t)prior.size());
 | 
						|
    }
 | 
						|
 | 
						|
    /// @return a deep copy of this factor
 | 
						|
    gtsam::NonlinearFactor::shared_ptr clone() const override {
 | 
						|
      return std::static_pointer_cast<gtsam::NonlinearFactor>(
 | 
						|
          gtsam::NonlinearFactor::shared_ptr(new This(*this))); }
 | 
						|
 | 
						|
    /** implement functions needed for Testable */
 | 
						|
 | 
						|
    /** print */
 | 
						|
    void print(const std::string& s, const KeyFormatter& keyFormatter = DefaultKeyFormatter) const override {
 | 
						|
      Base::print(s, keyFormatter);
 | 
						|
      gtsam::print(prior_, "prior");
 | 
						|
    }
 | 
						|
 | 
						|
    /** equals */
 | 
						|
    bool equals(const NonlinearFactor& expected, double tol=1e-9) const override {
 | 
						|
      const This *e = dynamic_cast<const This*> (&expected);
 | 
						|
      return e != nullptr && Base::equals(*e, tol) &&
 | 
						|
          gtsam::equal_with_abs_tol(this->prior_, e->prior_, tol) &&
 | 
						|
          this->indices_ == e->indices_;
 | 
						|
    }
 | 
						|
 | 
						|
    /** implement functions needed to derive from Factor */
 | 
						|
 | 
						|
    /** Returns a vector of errors for the measured tangent parameters.  */
 | 
						|
    Vector evaluateError(const T& p, OptionalMatrixType H) const override {
 | 
						|
      Eigen::Matrix<double, T::dimension, T::dimension> H_local;
 | 
						|
 | 
						|
      // If the Rot3 Cayley map is used, Rot3::LocalCoordinates will throw a runtime error
 | 
						|
      // when asked to compute the Jacobian matrix (see Rot3M.cpp).
 | 
						|
      #ifdef GTSAM_ROT3_EXPMAP
 | 
						|
      const Vector full_tangent = T::LocalCoordinates(p, H ? &H_local : nullptr);
 | 
						|
      #else
 | 
						|
      const Vector full_tangent = T::Logmap(p, H ? &H_local : nullptr);
 | 
						|
      #endif
 | 
						|
 | 
						|
      if (H) {
 | 
						|
        (*H) = Matrix::Zero(indices_.size(), T::dimension);
 | 
						|
        for (size_t i = 0; i < indices_.size(); ++i) {
 | 
						|
          (*H).row(i) = H_local.row(indices_.at(i));
 | 
						|
        }
 | 
						|
      }
 | 
						|
      // Select relevant parameters from the tangent vector.
 | 
						|
      Vector partial_tangent = Vector::Zero(indices_.size());
 | 
						|
      for (size_t i = 0; i < indices_.size(); ++i) {
 | 
						|
        partial_tangent(i) = full_tangent(indices_.at(i));
 | 
						|
      }
 | 
						|
 | 
						|
      return partial_tangent - prior_;
 | 
						|
    }
 | 
						|
 | 
						|
    // access
 | 
						|
    const Vector& prior() const { return prior_; }
 | 
						|
    const std::vector<size_t>& indices() const { return indices_; }
 | 
						|
 | 
						|
  private:
 | 
						|
#ifdef GTSAM_ENABLE_BOOST_SERIALIZATION
 | 
						|
    /** Serialization function */
 | 
						|
    friend class boost::serialization::access;
 | 
						|
    template<class ARCHIVE>
 | 
						|
    void serialize(ARCHIVE & ar, const unsigned int /*version*/) {
 | 
						|
      // NoiseModelFactor1 instead of NoiseModelFactorN for backward compatibility
 | 
						|
      ar & boost::serialization::make_nvp("NoiseModelFactor1",
 | 
						|
          boost::serialization::base_object<Base>(*this));
 | 
						|
      ar & BOOST_SERIALIZATION_NVP(prior_);
 | 
						|
      ar & BOOST_SERIALIZATION_NVP(indices_);
 | 
						|
      // ar & BOOST_SERIALIZATION_NVP(H_);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
  }; // \class PartialPriorFactor
 | 
						|
 | 
						|
} /// namespace gtsam
 |