228 lines
7.2 KiB
C++
228 lines
7.2 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file LieValues.h
|
|
* @Author: Richard Roberts
|
|
*
|
|
* @brief A templated config for Lie-group elements
|
|
*
|
|
* Detailed story:
|
|
* A values structure is a map from keys to values. It is used to specify the value of a bunch
|
|
* of variables in a factor graph. A LieValues is a values structure which can hold variables that
|
|
* are elements of Lie groups, not just vectors. It then, as a whole, implements a aggregate type
|
|
* which is also a Lie group, and hence supports operations dim, expmap, and logmap.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <map>
|
|
#include <set>
|
|
|
|
#include <boost/pool/pool_alloc.hpp>
|
|
|
|
#include <gtsam/base/Vector.h>
|
|
#include <gtsam/base/Testable.h>
|
|
#include <gtsam/nonlinear/Ordering.h>
|
|
|
|
namespace boost { template<class T> class optional; }
|
|
namespace gtsam { class VectorValues; class Ordering; }
|
|
|
|
namespace gtsam {
|
|
|
|
/**
|
|
* Lie type values structure
|
|
* Takes two template types
|
|
* J: a key type to look up values in the values structure (need to be sortable)
|
|
*
|
|
* Key concept:
|
|
* The key will be assumed to be sortable, and must have a
|
|
* typedef called "Value" with the type of the value the key
|
|
* labels (example: Pose2, Point2, etc)
|
|
*/
|
|
template<class J>
|
|
class LieValues : public Testable<LieValues<J> > {
|
|
|
|
public:
|
|
|
|
/**
|
|
* Typedefs
|
|
*/
|
|
typedef J Key;
|
|
typedef typename J::Value Value;
|
|
typedef std::map<J,Value, std::less<J>, boost::fast_pool_allocator<std::pair<const J,Value> > > KeyValueMap;
|
|
typedef typename KeyValueMap::value_type KeyValuePair;
|
|
typedef typename KeyValueMap::iterator iterator;
|
|
typedef typename KeyValueMap::const_iterator const_iterator;
|
|
|
|
private:
|
|
|
|
KeyValueMap values_;
|
|
|
|
public:
|
|
|
|
LieValues() {}
|
|
LieValues(const LieValues& config) :
|
|
values_(config.values_) {}
|
|
template<class J_ALT>
|
|
LieValues(const LieValues<J_ALT>& other) {} // do nothing when initializing with wrong type
|
|
virtual ~LieValues() {}
|
|
|
|
/** print */
|
|
void print(const std::string &s="") const;
|
|
|
|
/** Test whether configs are identical in keys and values */
|
|
bool equals(const LieValues& expected, double tol=1e-9) const;
|
|
|
|
/** Retrieve a variable by j, throws std::invalid_argument if not found */
|
|
const Value& at(const J& j) const;
|
|
|
|
/** operator[] syntax for get */
|
|
const Value& operator[](const J& j) const { return at(j); }
|
|
|
|
/** Check if a variable exists */
|
|
bool exists(const J& i) const { return values_.find(i)!=values_.end(); }
|
|
|
|
/** Check if a variable exists and return it if so */
|
|
boost::optional<Value> exists_(const J& i) const {
|
|
const_iterator it = values_.find(i);
|
|
if (it==values_.end()) return boost::none; else return it->second;
|
|
}
|
|
|
|
/** The number of variables in this config */
|
|
size_t size() const { return values_.size(); }
|
|
|
|
/** whether the config is empty */
|
|
bool empty() const { return values_.empty(); }
|
|
|
|
/** The dimensionality of the tangent space */
|
|
size_t dim() const;
|
|
|
|
/** Get a zero VectorValues of the correct structure */
|
|
VectorValues zero(const Ordering& ordering) const;
|
|
|
|
const_iterator begin() const { return values_.begin(); }
|
|
const_iterator end() const { return values_.end(); }
|
|
iterator begin() { return values_.begin(); }
|
|
iterator end() { return values_.end(); }
|
|
|
|
// Lie operations
|
|
|
|
/** Add a delta config to current config and returns a new config */
|
|
LieValues expmap(const VectorValues& delta, const Ordering& ordering) const;
|
|
|
|
/** Get a delta config about a linearization point c0 (*this) */
|
|
VectorValues logmap(const LieValues& cp, const Ordering& ordering) const;
|
|
|
|
/** Get a delta config about a linearization point c0 (*this) */
|
|
void logmap(const LieValues& cp, const Ordering& ordering, VectorValues& delta) const;
|
|
|
|
// imperative methods:
|
|
|
|
/** Add a variable with the given j - does not replace existing values */
|
|
void insert(const J& j, const Value& val);
|
|
|
|
/** Add a set of variables - does note replace existing values */
|
|
void insert(const LieValues& cfg);
|
|
|
|
/** update the current available values without adding new ones */
|
|
void update(const LieValues& cfg);
|
|
|
|
/** single element change of existing element */
|
|
void update(const J& j, const Value& val);
|
|
|
|
/** Remove a variable from the config */
|
|
void erase(const J& j);
|
|
|
|
/** Remove a variable from the config while returning the dimensionality of
|
|
* the removed element (normally not needed by user code).
|
|
*/
|
|
void erase(const J& j, size_t& dim);
|
|
|
|
/**
|
|
* Returns a set of keys in the config
|
|
* Note: by construction, the list is ordered
|
|
*/
|
|
std::list<J> keys() const;
|
|
|
|
/** Replace all keys and variables */
|
|
LieValues& operator=(const LieValues& rhs) {
|
|
values_ = rhs.values_;
|
|
return (*this);
|
|
}
|
|
|
|
/** Remove all variables from the config */
|
|
void clear() {
|
|
values_.clear();
|
|
}
|
|
|
|
/**
|
|
* Apply a class with an application operator() to a const_iterator over
|
|
* every <key,value> pair. The operator must be able to handle such an
|
|
* iterator for every type in the Values, (i.e. through templating).
|
|
*/
|
|
template<typename A>
|
|
void apply(A& operation) {
|
|
for(iterator it = begin(); it != end(); ++it)
|
|
operation(it);
|
|
}
|
|
template<typename A>
|
|
void apply(A& operation) const {
|
|
for(const_iterator it = begin(); it != end(); ++it)
|
|
operation(it);
|
|
}
|
|
|
|
/** Create an array of variable dimensions using the given ordering */
|
|
std::vector<size_t> dims(const Ordering& ordering) const;
|
|
|
|
/**
|
|
* Generate a default ordering, simply in key sort order. To instead
|
|
* create a fill-reducing ordering, use
|
|
* NonlinearFactorGraph::orderingCOLAMD(). Alternatively, you may permute
|
|
* this ordering yourself (as orderingCOLAMD() does internally).
|
|
*/
|
|
Ordering::shared_ptr orderingArbitrary(Index firstVar = 0) const;
|
|
|
|
private:
|
|
/** Serialization function */
|
|
friend class boost::serialization::access;
|
|
template<class ARCHIVE>
|
|
void serialize(ARCHIVE & ar, const unsigned int version) {
|
|
ar & BOOST_SERIALIZATION_NVP(values_);
|
|
}
|
|
|
|
};
|
|
|
|
struct _ValuesDimensionCollector {
|
|
const Ordering& ordering;
|
|
std::vector<size_t> dimensions;
|
|
_ValuesDimensionCollector(const Ordering& _ordering) : ordering(_ordering), dimensions(_ordering.nVars()) {}
|
|
template<typename I> void operator()(const I& key_value) {
|
|
Index var = ordering[key_value->first];
|
|
assert(var < dimensions.size());
|
|
dimensions[var] = key_value->second.dim();
|
|
}
|
|
};
|
|
|
|
/* ************************************************************************* */
|
|
struct _ValuesKeyOrderer {
|
|
Index var;
|
|
Ordering::shared_ptr ordering;
|
|
_ValuesKeyOrderer(Index firstVar) : var(firstVar), ordering(new Ordering) {}
|
|
template<typename I> void operator()(const I& key_value) {
|
|
ordering->insert(key_value->first, var);
|
|
++ var;
|
|
}
|
|
};
|
|
|
|
}
|
|
|