269 lines
13 KiB
C++
269 lines
13 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file CombinedImuFactor.cpp
|
|
* @author Luca Carlone
|
|
* @author Stephen Williams
|
|
* @author Richard Roberts
|
|
* @author Vadim Indelman
|
|
* @author David Jensen
|
|
* @author Frank Dellaert
|
|
**/
|
|
|
|
#include <gtsam/navigation/CombinedImuFactor.h>
|
|
|
|
/* External or standard includes */
|
|
#include <ostream>
|
|
|
|
namespace gtsam {
|
|
|
|
using namespace std;
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Inner class CombinedPreintegratedMeasurements
|
|
//------------------------------------------------------------------------------
|
|
CombinedImuFactor::CombinedPreintegratedMeasurements::CombinedPreintegratedMeasurements(
|
|
const imuBias::ConstantBias& bias, const Matrix3& measuredAccCovariance,
|
|
const Matrix3& measuredOmegaCovariance, const Matrix3& integrationErrorCovariance,
|
|
const Matrix3& biasAccCovariance, const Matrix3& biasOmegaCovariance,
|
|
const Matrix& biasAccOmegaInit, const bool use2ndOrderIntegration) :
|
|
PreintegrationBase(bias, use2ndOrderIntegration)
|
|
{
|
|
measurementCovariance_.setZero();
|
|
measurementCovariance_.block<3,3>(0,0) = integrationErrorCovariance;
|
|
measurementCovariance_.block<3,3>(3,3) = measuredAccCovariance;
|
|
measurementCovariance_.block<3,3>(6,6) = measuredOmegaCovariance;
|
|
measurementCovariance_.block<3,3>(9,9) = biasAccCovariance;
|
|
measurementCovariance_.block<3,3>(12,12) = biasOmegaCovariance;
|
|
measurementCovariance_.block<6,6>(15,15) = biasAccOmegaInit;
|
|
preintMeasCov_.setZero();
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
void CombinedImuFactor::CombinedPreintegratedMeasurements::print(const string& s) const{
|
|
PreintegrationBase::print(s);
|
|
cout << " measurementCovariance [ " << measurementCovariance_ << " ]" << endl;
|
|
cout << " preintMeasCov [ " << preintMeasCov_ << " ]" << endl;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
bool CombinedImuFactor::CombinedPreintegratedMeasurements::equals(const CombinedPreintegratedMeasurements& expected, double tol) const{
|
|
return equal_with_abs_tol(measurementCovariance_, expected.measurementCovariance_, tol)
|
|
&& equal_with_abs_tol(preintMeasCov_, expected.preintMeasCov_, tol)
|
|
&& PreintegrationBase::equals(expected, tol);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
void CombinedImuFactor::CombinedPreintegratedMeasurements::resetIntegration(){
|
|
PreintegrationBase::resetIntegration();
|
|
preintMeasCov_.setZero();
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
void CombinedImuFactor::CombinedPreintegratedMeasurements::integrateMeasurement(
|
|
const Vector3& measuredAcc, const Vector3& measuredOmega,
|
|
double deltaT, boost::optional<const Pose3&> body_P_sensor) {
|
|
|
|
// NOTE: order is important here because each update uses old values, e.g., velocity and position updates are based on previous rotation estimate.
|
|
// (i.e., we have to update jacobians and covariances before updating preintegrated measurements).
|
|
|
|
Vector3 correctedAcc, correctedOmega;
|
|
correctMeasurementsByBiasAndSensorPose(measuredAcc, measuredOmega, correctedAcc, correctedOmega, body_P_sensor);
|
|
|
|
const Vector3 theta_incr = correctedOmega * deltaT; // rotation vector describing rotation increment computed from the current rotation rate measurement
|
|
const Rot3 Rincr = Rot3::Expmap(theta_incr); // rotation increment computed from the current rotation rate measurement
|
|
const Matrix3 Jr_theta_incr = Rot3::rightJacobianExpMapSO3(theta_incr); // Right jacobian computed at theta_incr
|
|
|
|
// Update Jacobians
|
|
/* ----------------------------------------------------------------------------------------------------------------------- */
|
|
updatePreintegratedJacobians(correctedAcc, Jr_theta_incr, Rincr, deltaT);
|
|
|
|
// Update preintegrated measurements covariance: as in [2] we consider a first order propagation that
|
|
// can be seen as a prediction phase in an EKF framework. In this implementation, contrarily to [2] we
|
|
// consider the uncertainty of the bias selection and we keep correlation between biases and preintegrated measurements
|
|
/* ----------------------------------------------------------------------------------------------------------------------- */
|
|
const Vector3 theta_i = thetaRij(); // super-expensive parametrization of so(3)
|
|
const Matrix3 Jr_theta_i = Rot3::rightJacobianExpMapSO3(theta_i);
|
|
|
|
// Update preintegrated measurements. TODO Frank moved from end of this function !!!
|
|
updatePreintegratedMeasurements(correctedAcc, Rincr, deltaT);
|
|
|
|
const Vector3 theta_j = thetaRij(); // super-expensive parametrization of so(3)
|
|
const Matrix3 Jrinv_theta_j = Rot3::rightJacobianExpMapSO3inverse(theta_j);
|
|
|
|
// Single Jacobians to propagate covariance
|
|
Matrix3 H_pos_pos = I_3x3;
|
|
Matrix3 H_pos_vel = I_3x3 * deltaT;
|
|
Matrix3 H_pos_angles = Z_3x3;
|
|
|
|
Matrix3 H_vel_pos = Z_3x3;
|
|
Matrix3 H_vel_vel = I_3x3;
|
|
Matrix3 H_vel_angles = - deltaRij() * skewSymmetric(correctedAcc) * Jr_theta_i * deltaT;
|
|
// analytic expression corresponding to the following numerical derivative
|
|
// Matrix H_vel_angles = numericalDerivative11<LieVector, LieVector>(boost::bind(&PreIntegrateIMUObservations_delta_vel, correctedOmega, correctedAcc, deltaT, _1, deltaVij), theta_i);
|
|
Matrix3 H_vel_biasacc = - deltaRij() * deltaT;
|
|
|
|
Matrix3 H_angles_pos = Z_3x3;
|
|
Matrix3 H_angles_vel = Z_3x3;
|
|
Matrix3 H_angles_angles = Jrinv_theta_j * Rincr.inverse().matrix() * Jr_theta_i;
|
|
Matrix3 H_angles_biasomega =- Jrinv_theta_j * Jr_theta_incr * deltaT;
|
|
// analytic expression corresponding to the following numerical derivative
|
|
// Matrix H_angles_angles = numericalDerivative11<Vector3, Vector3>(boost::bind(&PreIntegrateIMUObservations_delta_angles, correctedOmega, deltaT, _1), thetaij);
|
|
|
|
// overall Jacobian wrt preintegrated measurements (df/dx)
|
|
Matrix F(15,15);
|
|
F << H_pos_pos, H_pos_vel, H_pos_angles, Z_3x3, Z_3x3,
|
|
H_vel_pos, H_vel_vel, H_vel_angles, H_vel_biasacc, Z_3x3,
|
|
H_angles_pos, H_angles_vel, H_angles_angles, Z_3x3, H_angles_biasomega,
|
|
Z_3x3, Z_3x3, Z_3x3, I_3x3, Z_3x3,
|
|
Z_3x3, Z_3x3, Z_3x3, Z_3x3, I_3x3;
|
|
|
|
// first order uncertainty propagation
|
|
// Optimized matrix multiplication (1/deltaT) * G * measurementCovariance * G.transpose()
|
|
|
|
Matrix G_measCov_Gt = Matrix::Zero(15,15);
|
|
// BLOCK DIAGONAL TERMS
|
|
G_measCov_Gt.block<3,3>(0,0) = deltaT * measurementCovariance_.block<3,3>(0,0);
|
|
|
|
G_measCov_Gt.block<3,3>(3,3) = (1/deltaT) * (H_vel_biasacc) *
|
|
(measurementCovariance_.block<3,3>(3,3) + measurementCovariance_.block<3,3>(15,15) ) *
|
|
(H_vel_biasacc.transpose());
|
|
|
|
G_measCov_Gt.block<3,3>(6,6) = (1/deltaT) * (H_angles_biasomega) *
|
|
(measurementCovariance_.block<3,3>(6,6) + measurementCovariance_.block<3,3>(18,18) ) *
|
|
(H_angles_biasomega.transpose());
|
|
|
|
G_measCov_Gt.block<3,3>(9,9) = deltaT * measurementCovariance_.block<3,3>(9,9);
|
|
|
|
G_measCov_Gt.block<3,3>(12,12) = deltaT * measurementCovariance_.block<3,3>(12,12);
|
|
|
|
// NEW OFF BLOCK DIAGONAL TERMS
|
|
Matrix3 block23 = H_vel_biasacc * measurementCovariance_.block<3,3>(18,15) * H_angles_biasomega.transpose();
|
|
G_measCov_Gt.block<3,3>(3,6) = block23;
|
|
G_measCov_Gt.block<3,3>(6,3) = block23.transpose();
|
|
|
|
preintMeasCov_ = F * preintMeasCov_ * F.transpose() + G_measCov_Gt;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// CombinedImuFactor methods
|
|
//------------------------------------------------------------------------------
|
|
CombinedImuFactor::CombinedImuFactor() :
|
|
ImuFactorBase(), preintegratedMeasurements_(imuBias::ConstantBias(), Z_3x3, Z_3x3, Z_3x3, Z_3x3, Z_3x3, Matrix::Zero(6,6)) {}
|
|
|
|
//------------------------------------------------------------------------------
|
|
CombinedImuFactor::CombinedImuFactor(Key pose_i, Key vel_i, Key pose_j, Key vel_j, Key bias_i, Key bias_j,
|
|
const CombinedPreintegratedMeasurements& preintegratedMeasurements,
|
|
const Vector3& gravity, const Vector3& omegaCoriolis,
|
|
boost::optional<const Pose3&> body_P_sensor, const bool use2ndOrderCoriolis) :
|
|
Base(noiseModel::Gaussian::Covariance(preintegratedMeasurements.preintMeasCov_), pose_i, vel_i, pose_j, vel_j, bias_i, bias_j),
|
|
ImuFactorBase(gravity, omegaCoriolis, body_P_sensor, use2ndOrderCoriolis),
|
|
preintegratedMeasurements_(preintegratedMeasurements) {}
|
|
|
|
//------------------------------------------------------------------------------
|
|
gtsam::NonlinearFactor::shared_ptr CombinedImuFactor::clone() const {
|
|
return boost::static_pointer_cast<gtsam::NonlinearFactor>(
|
|
gtsam::NonlinearFactor::shared_ptr(new This(*this)));
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
void CombinedImuFactor::print(const string& s, const KeyFormatter& keyFormatter) const {
|
|
cout << s << "CombinedImuFactor("
|
|
<< keyFormatter(this->key1()) << ","
|
|
<< keyFormatter(this->key2()) << ","
|
|
<< keyFormatter(this->key3()) << ","
|
|
<< keyFormatter(this->key4()) << ","
|
|
<< keyFormatter(this->key5()) << ","
|
|
<< keyFormatter(this->key6()) << ")\n";
|
|
ImuFactorBase::print("");
|
|
preintegratedMeasurements_.print(" preintegrated measurements:");
|
|
this->noiseModel_->print(" noise model: ");
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
bool CombinedImuFactor::equals(const NonlinearFactor& expected, double tol) const {
|
|
const This *e = dynamic_cast<const This*> (&expected);
|
|
return e != NULL && Base::equals(*e, tol)
|
|
&& preintegratedMeasurements_.equals(e->preintegratedMeasurements_, tol)
|
|
&& ImuFactorBase::equals(*e, tol);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
Vector CombinedImuFactor::evaluateError(const Pose3& pose_i, const Vector3& vel_i, const Pose3& pose_j, const Vector3& vel_j,
|
|
const imuBias::ConstantBias& bias_i, const imuBias::ConstantBias& bias_j,
|
|
boost::optional<Matrix&> H1, boost::optional<Matrix&> H2,
|
|
boost::optional<Matrix&> H3, boost::optional<Matrix&> H4,
|
|
boost::optional<Matrix&> H5, boost::optional<Matrix&> H6) const {
|
|
|
|
// if we need the jacobians
|
|
if(H1 || H2 || H3 || H4 || H5 || H6){
|
|
Matrix H1_pvR, H2_pvR, H3_pvR, H4_pvR, H5_pvR, Hbias_i, Hbias_j; // pvR = mnemonic: position (p), velocity (v), rotation (R)
|
|
|
|
// error wrt preintegrated measurements
|
|
Vector r_pvR(9); r_pvR << ImuFactorBase::computeErrorAndJacobians(preintegratedMeasurements_, pose_i, vel_i, pose_j, vel_j, bias_i,
|
|
H1_pvR, H2_pvR, H3_pvR, H4_pvR, H5_pvR);
|
|
|
|
// error wrt bias evolution model (random walk)
|
|
Vector6 fbias = bias_j.between(bias_i, Hbias_j, Hbias_i).vector(); // [bias_j.acc - bias_i.acc; bias_j.gyr - bias_i.gyr]
|
|
|
|
if(H1) {
|
|
H1->resize(15,6);
|
|
H1->block<9,6>(0,0) = H1_pvR;
|
|
// adding: [dBiasAcc/dPi ; dBiasOmega/dPi]
|
|
H1->block<6,6>(0,9) = Matrix::Zero(6,6);
|
|
}
|
|
if(H2) {
|
|
H2->resize(15,3);
|
|
H2->block<9,3>(0,0) = H2_pvR;
|
|
// adding: [dBiasAcc/dVi ; dBiasOmega/dVi]
|
|
H2->block<6,3>(0,9) = Matrix::Zero(6,3);
|
|
}
|
|
if(H3) {
|
|
H3->resize(15,6);
|
|
H3->block<9,6>(0,0) = H3_pvR;
|
|
// adding: [dBiasAcc/dPj ; dBiasOmega/dPj]
|
|
H3->block<6,6>(0,9) = Matrix::Zero(6,6);
|
|
}
|
|
if(H4) {
|
|
H4->resize(15,3);
|
|
H4->block<9,3>(0,0) = H4_pvR;
|
|
// adding: [dBiasAcc/dVi ; dBiasOmega/dVi]
|
|
H4->block<6,3>(0,9) = Matrix::Zero(6,3);
|
|
}
|
|
if(H5) {
|
|
H5->resize(15,6);
|
|
H5->block<9,6>(0,0) = H5_pvR;
|
|
// adding: [dBiasAcc/dBias_i ; dBiasOmega/dBias_i]
|
|
H5->block<6,6>(0,9) = Hbias_i;
|
|
}
|
|
if(H6) {
|
|
H6->resize(15,6);
|
|
H6->block<9,6>(0,0) = Matrix::Zero(6,6);
|
|
// adding: [dBiasAcc/dBias_j ; dBiasOmega/dBias_j]
|
|
H6->block<6,6>(0,9) = Hbias_j;
|
|
}
|
|
Vector r(15); r << r_pvR, fbias; // vector of size 15
|
|
return r;
|
|
}
|
|
// else, only compute the error vector:
|
|
// error wrt preintegrated measurements
|
|
Vector r_pvR(9); r_pvR << ImuFactorBase::computeErrorAndJacobians(preintegratedMeasurements_, pose_i, vel_i, pose_j, vel_j, bias_i,
|
|
boost::none, boost::none, boost::none, boost::none, boost::none);
|
|
// error wrt bias evolution model (random walk)
|
|
Vector6 fbias = bias_j.between(bias_i).vector(); // [bias_j.acc - bias_i.acc; bias_j.gyr - bias_i.gyr]
|
|
// overall error
|
|
Vector r(15); r << r_pvR, fbias; // vector of size 15
|
|
return r;
|
|
}
|
|
|
|
} /// namespace gtsam
|