216 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			Python
		
	
	
			
		
		
	
	
			216 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			Python
		
	
	
| """
 | |
| Process timing results from timeShonanAveraging
 | |
| """
 | |
| 
 | |
| import xlrd
 | |
| import numpy as np
 | |
| import matplotlib.pyplot as plt
 | |
| from matplotlib.ticker import FuncFormatter
 | |
| import heapq
 | |
| from collections import Counter
 | |
| 
 | |
| def make_combined_plot(name, p_values, times, costs, min_cost_range=10):
 | |
|     """ Make a plot that combines timing and SO(3) cost.
 | |
|         Arguments:
 | |
|             name: string of the plot title
 | |
|             p_values: list of p-values (int)
 | |
|             times: list of timings (seconds)
 | |
|             costs: list of costs (double)
 | |
|         Will calculate the range of the costs, default minimum range = 10.0
 | |
|     """
 | |
|     min_cost = min(costs)
 | |
|     cost_range = max(max(costs)-min_cost,min_cost_range)
 | |
|     fig = plt.figure()
 | |
|     ax1 = fig.add_subplot(111)
 | |
|     ax1.plot(p_values, times, label="time")
 | |
|     ax1.set_ylabel('Time used to optimize \ seconds')
 | |
|     ax1.set_xlabel('p_value')
 | |
|     ax2 = ax1.twinx()
 | |
|     ax2.plot(p_values, costs, 'r', label="cost")
 | |
|     ax2.set_ylabel('Cost at SO(3) form')
 | |
|     ax2.set_xlabel('p_value')
 | |
|     ax2.set_xticks(p_values)
 | |
|     ax2.set_ylim(min_cost, min_cost + cost_range)
 | |
|     plt.title(name, fontsize=12)
 | |
|     ax1.legend(loc="upper left")
 | |
|     ax2.legend(loc="upper right")
 | |
|     plt.interactive(False)
 | |
|     plt.show()
 | |
| 
 | |
| def make_convergence_plot(name, p_values, times, costs, iter=10):
 | |
|     """ Make a bar that show the success rate for each p_value according to whether the SO(3) cost converges
 | |
|         Arguments:
 | |
|             name: string of the plot title
 | |
|             p_values: list of p-values (int)
 | |
|             times: list of timings (seconds)
 | |
|             costs: list of costs (double)
 | |
|             iter: int of iteration number for each p_value
 | |
|     """
 | |
|     
 | |
|     max_cost = np.mean(np.array(heapq.nlargest(iter, costs)))
 | |
|     # calculate mean costs for each p value
 | |
|     p_values = list(dict(Counter(p_values)).keys())
 | |
|     # make sure the iter number 
 | |
|     iter = int(len(times)/len(p_values))
 | |
|     p_mean_cost = [np.mean(np.array(costs[i*iter:(i+1)*iter])) for i in range(len(p_values))]
 | |
|     p_max = p_values[p_mean_cost.index(max(p_mean_cost))]
 | |
|     # print(p_mean_cost)
 | |
|     # print(p_max)
 | |
| 
 | |
|     #take mean and make the combined plot
 | |
|     mean_times = []
 | |
|     mean_costs = []
 | |
|     for p in p_values:
 | |
|         costs_tmp = costs[p_values.index(p)*iter:(p_values.index(p)+1)*iter]
 | |
|         mean_cost = sum(costs_tmp)/len(costs_tmp)
 | |
|         mean_costs.append(mean_cost)
 | |
|         times_tmp = times[p_values.index(p)*iter:(p_values.index(p)+1)*iter]
 | |
|         mean_time = sum(times_tmp)/len(times_tmp)
 | |
|         mean_times.append(mean_time)
 | |
|     make_combined_plot(name, p_values,mean_times, mean_costs)
 | |
| 
 | |
|     # calculate the convergence rate for each p_value
 | |
|     p_success_rates = []
 | |
|     if p_mean_cost[0] >= 0.95*np.mean(np.array(costs)) and p_mean_cost[0] <= 1.05*np.mean(np.array(costs)):
 | |
|         p_success_rates = [ 1.0 for p in p_values]
 | |
|     else:
 | |
|         for p in p_values:
 | |
|             if p > p_max:
 | |
|                 p_costs = costs[p_values.index(p)*iter:(p_values.index(p)+1)*iter]
 | |
|                 # print(p_costs)
 | |
|                 converged = [ int(p_cost < 0.3*max_cost) for p_cost in p_costs]
 | |
|                 success_rate = sum(converged)/len(converged)    
 | |
|                 p_success_rates.append(success_rate)
 | |
|             else:
 | |
|                 p_success_rates.append(0)
 | |
| 
 | |
|     plt.bar(p_values, p_success_rates, align='center', alpha=0.5)
 | |
|     plt.xticks(p_values)
 | |
|     plt.yticks(np.arange(0, 1.2, 0.2), ['0%', '20%', '40%', '60%', '80%', '100%'])
 | |
|     plt.xlabel("p_value")
 | |
|     plt.ylabel("success rate")
 | |
|     plt.title(name, fontsize=12)
 | |
|     plt.show()
 | |
| 
 | |
| def make_eigen_and_bound_plot(name, p_values, times1, costPs, cost3s, times2, min_eigens, subounds):
 | |
|     """ Make a plot that combines time for optimizing, time for optimizing and compute min_eigen,
 | |
|         min_eigen, subound (subound = (f_R - f_SDP) / f_SDP).
 | |
|         Arguments:
 | |
|             name: string of the plot title
 | |
|             p_values: list of p-values (int)
 | |
|             times1: list of timings (seconds)
 | |
|             costPs: f_SDP
 | |
|             cost3s: f_R
 | |
|             times2: list of timings (seconds)
 | |
|             min_eigens: list of min_eigen (double)
 | |
|             subounds: list of subound (double)
 | |
|     """
 | |
|     
 | |
|     if dict(Counter(p_values))[5] != 1:
 | |
|         p_values = list(dict(Counter(p_values)).keys())
 | |
|         iter = int(len(times1)/len(p_values))
 | |
|         p_mean_times1 = [np.mean(np.array(times1[i*iter:(i+1)*iter])) for i in range(len(p_values))]
 | |
|         p_mean_times2 = [np.mean(np.array(times2[i*iter:(i+1)*iter])) for i in range(len(p_values))]
 | |
|         print("p_values \n", p_values)
 | |
|         print("p_mean_times_opti \n", p_mean_times1)
 | |
|         print("p_mean_times_eig \n", p_mean_times2)
 | |
| 
 | |
|         p_mean_costPs = [np.mean(np.array(costPs[i*iter:(i+1)*iter])) for i in range(len(p_values))]
 | |
|         p_mean_cost3s = [np.mean(np.array(cost3s[i*iter:(i+1)*iter])) for i in range(len(p_values))]
 | |
|         p_mean_lambdas = [np.mean(np.array(min_eigens[i*iter:(i+1)*iter])) for i in range(len(p_values))]
 | |
| 
 | |
|         print("p_mean_costPs \n", p_mean_costPs)
 | |
|         print("p_mean_cost3s \n", p_mean_cost3s)
 | |
|         print("p_mean_lambdas \n", p_mean_lambdas)
 | |
|         print("*******************************************************************************************************************")
 | |
| 
 | |
| 
 | |
|     else:
 | |
|         plt.figure(1)
 | |
|         plt.ylabel('Time used (seconds)')
 | |
|         plt.xlabel('p_value')
 | |
|         plt.plot(p_values, times1, 'r', label="time for optimizing")
 | |
|         plt.plot(p_values, times2, 'blue', label="time for optimizing and check")
 | |
|         plt.title(name, fontsize=12)
 | |
|         plt.legend(loc="best")
 | |
|         plt.interactive(False)
 | |
|         plt.show()
 | |
| 
 | |
|         plt.figure(2)
 | |
|         plt.ylabel('Min eigen_value')
 | |
|         plt.xlabel('p_value')
 | |
|         plt.plot(p_values, min_eigens, 'r', label="min_eigen values")
 | |
|         plt.title(name, fontsize=12)
 | |
|         plt.legend(loc="best")
 | |
|         plt.interactive(False)
 | |
|         plt.show()
 | |
| 
 | |
|         plt.figure(3)
 | |
|         plt.ylabel('sub_bounds')
 | |
|         plt.xlabel('p_value')
 | |
|         plt.plot(p_values, subounds, 'blue', label="sub_bounds")
 | |
|         plt.title(name, fontsize=12)
 | |
|         plt.legend(loc="best")
 | |
|         plt.show()
 | |
| 
 | |
| # Process arguments and call plot function
 | |
| import argparse
 | |
| import csv
 | |
| import os
 | |
| 
 | |
| parser = argparse.ArgumentParser()
 | |
| parser.add_argument("path")
 | |
| args = parser.parse_args()
 | |
| 
 | |
| 
 | |
| file_path = []
 | |
| domain = os.path.abspath(args.path)
 | |
| for info in os.listdir(args.path):
 | |
|     file_path.append(os.path.join(domain, info))
 | |
| file_path.sort()
 | |
| print(file_path)
 | |
| 
 | |
| 
 | |
| # name of all the plots
 | |
| names = {}
 | |
| names[0] = 'tinyGrid3D vertex = 9, edge = 11'
 | |
| names[1] = 'smallGrid3D vertex = 125, edge = 297'
 | |
| names[2] = 'parking-garage vertex = 1661, edge = 6275'
 | |
| names[3] = 'sphere2500 vertex = 2500, edge = 4949'
 | |
| # names[4] = 'sphere_bignoise vertex = 2200, edge = 8647'
 | |
| names[5] = 'torus3D vertex = 5000, edge = 9048'
 | |
| names[6] = 'cubicle vertex = 5750, edge = 16869'
 | |
| names[7] = 'rim vertex = 10195, edge = 29743'
 | |
| 
 | |
| # Parse CSV file
 | |
| for key, name in names.items():
 | |
|     print(key, name)
 | |
| 
 | |
|     # find  according file to process
 | |
|     name_file = None
 | |
|     for path in file_path:
 | |
|         if name[0:3] in path:
 | |
|             name_file = path
 | |
|     if name_file == None:
 | |
|         print("The file %s is not in the path" % name)
 | |
|         continue
 | |
| 
 | |
|     p_values, times1, costPs, cost3s, times2, min_eigens, subounds = [],[],[],[],[],[],[]
 | |
|     with open(name_file) as csvfile:
 | |
|         reader = csv.reader(csvfile, delimiter='\t')
 | |
|         for row in reader:
 | |
|             print(row)
 | |
|             p_values.append(int(row[0]))
 | |
|             times1.append(float(row[1]))
 | |
|             costPs.append(float(row[2]))
 | |
|             cost3s.append(float(row[3]))
 | |
|             if len(row) > 4:
 | |
|                 times2.append(float(row[4]))
 | |
|                 min_eigens.append(float(row[5]))
 | |
|                 subounds.append(float(row[6]))
 | |
| 
 | |
|     #plot
 | |
|     # make_combined_plot(name, p_values, times1, cost3s)
 | |
|     # make_convergence_plot(name, p_values, times1, cost3s)
 | |
|     make_eigen_and_bound_plot(name, p_values, times1, costPs, cost3s, times2, min_eigens, subounds)
 |