150 lines
3.9 KiB
C++
150 lines
3.9 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file iterative.h
|
|
* @brief Iterative methods, implementation
|
|
* @author Frank Dellaert
|
|
* @date Dec 28, 2009
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <gtsam/base/Matrix.h>
|
|
#include <gtsam/linear/VectorValues.h>
|
|
#include <gtsam/linear/IterativeOptimizationParameters.h>
|
|
|
|
namespace gtsam {
|
|
|
|
/**
|
|
* Method of conjugate gradients (CG) template
|
|
* "System" class S needs gradient(S,v), e=S*v, v=S^e
|
|
* "Vector" class V needs dot(v,v), -v, v+v, s*v
|
|
* "Vector" class E needs dot(v,v)
|
|
* @param Ab, the "system" that needs to be solved, examples below
|
|
* @param x is the initial estimate
|
|
* @param epsilon determines the convergence criterion: norm(g)<epsilon*norm(g0)
|
|
* @param maxIterations, if 0 will be set to |x|
|
|
* @param steepest flag, if true does steepest descent, not CG
|
|
* */
|
|
template<class S, class V, class E>
|
|
V conjugateGradients(const S& Ab, V x, bool verbose, double epsilon,
|
|
size_t maxIterations, bool steepest = false);
|
|
|
|
/**
|
|
* Helper class encapsulating the combined system |Ax-b_|^2
|
|
* Needed to run Conjugate Gradients on matrices
|
|
* */
|
|
class System {
|
|
private:
|
|
const Matrix& A_;
|
|
const Vector& b_;
|
|
|
|
public:
|
|
|
|
System(const Matrix& A, const Vector& b) :
|
|
A_(A), b_(b) {
|
|
}
|
|
|
|
/** Access A matrix */
|
|
const Matrix& A() const { return A_; }
|
|
|
|
/** Access b vector */
|
|
const Vector& b() const { return b_; }
|
|
|
|
/** Apply operator A'*e */
|
|
Vector operator^(const Vector& e) const {
|
|
return A_ ^ e;
|
|
}
|
|
|
|
/**
|
|
* Print with optional string
|
|
*/
|
|
void print (const std::string& s = "System") const;
|
|
};
|
|
|
|
/** gradient of objective function 0.5*|Ax-b_|^2 at x = A_'*(Ax-b_) */
|
|
inline Vector gradient(const System& system, const Vector& x) {
|
|
return system.A() ^ (system.A() * x - system.b());
|
|
}
|
|
|
|
/** Apply operator A */
|
|
inline Vector operator*(const System& system, const Vector& x) {
|
|
return system.A() * x;
|
|
}
|
|
|
|
/** Apply operator A in place */
|
|
inline void multiplyInPlace(const System& system, const Vector& x, Vector& e) {
|
|
e = system.A() * x;
|
|
}
|
|
|
|
/** x += alpha* A'*e */
|
|
inline void transposeMultiplyAdd(const System& system, double alpha, const Vector& e, Vector& x) {
|
|
transposeMultiplyAdd(alpha,system.A(),e,x);
|
|
}
|
|
|
|
/**
|
|
* Method of steepest gradients, System version
|
|
*/
|
|
Vector steepestDescent(
|
|
const System& Ab,
|
|
const Vector& x,
|
|
const IterativeOptimizationParameters & parameters);
|
|
|
|
/**
|
|
* Method of conjugate gradients (CG), System version
|
|
*/
|
|
Vector conjugateGradientDescent(
|
|
const System& Ab,
|
|
const Vector& x,
|
|
const IterativeOptimizationParameters & parameters);
|
|
|
|
/** convenience calls using matrices, will create System class internally: */
|
|
|
|
/**
|
|
* Method of steepest gradients, Matrix version
|
|
*/
|
|
Vector steepestDescent(
|
|
const Matrix& A,
|
|
const Vector& b,
|
|
const Vector& x,
|
|
const IterativeOptimizationParameters & parameters);
|
|
|
|
/**
|
|
* Method of conjugate gradients (CG), Matrix version
|
|
*/
|
|
Vector conjugateGradientDescent(
|
|
const Matrix& A,
|
|
const Vector& b,
|
|
const Vector& x,
|
|
const IterativeOptimizationParameters & parameters);
|
|
|
|
class GaussianFactorGraph;
|
|
|
|
/**
|
|
* Method of steepest gradients, Gaussian Factor Graph version
|
|
* */
|
|
VectorValues steepestDescent(
|
|
const GaussianFactorGraph& fg,
|
|
const VectorValues& x,
|
|
const IterativeOptimizationParameters & parameters);
|
|
|
|
/**
|
|
* Method of conjugate gradients (CG), Gaussian Factor Graph version
|
|
* */
|
|
VectorValues conjugateGradientDescent(
|
|
const GaussianFactorGraph& fg,
|
|
const VectorValues& x,
|
|
const IterativeOptimizationParameters & parameters);
|
|
|
|
|
|
} // namespace gtsam
|