579 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			579 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
/* ----------------------------------------------------------------------------
 | 
						|
 | 
						|
 * GTSAM Copyright 2010, Georgia Tech Research Corporation, 
 | 
						|
 * Atlanta, Georgia 30332-0415
 | 
						|
 * All Rights Reserved
 | 
						|
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
 | 
						|
 * See LICENSE for the license information
 | 
						|
 | 
						|
 * -------------------------------------------------------------------------- */
 | 
						|
 | 
						|
/*
 | 
						|
 * @file testNonlinearEquality.cpp
 | 
						|
 * @author Alex Cunningham
 | 
						|
 */
 | 
						|
 | 
						|
#include <tests/simulated2DConstraints.h>
 | 
						|
 | 
						|
#include <gtsam/slam/PriorFactor.h>
 | 
						|
#include <gtsam/slam/ProjectionFactor.h>
 | 
						|
#include <gtsam/inference/Symbol.h>
 | 
						|
#include <gtsam/nonlinear/NonlinearEquality.h>
 | 
						|
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | 
						|
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
 | 
						|
#include <gtsam/geometry/Point2.h>
 | 
						|
#include <gtsam/geometry/Pose2.h>
 | 
						|
#include <gtsam/geometry/Point3.h>
 | 
						|
#include <gtsam/geometry/Pose3.h>
 | 
						|
#include <gtsam/geometry/Cal3_S2.h>
 | 
						|
#include <gtsam/geometry/SimpleCamera.h>
 | 
						|
 | 
						|
#include <CppUnitLite/TestHarness.h>
 | 
						|
 | 
						|
using namespace std;
 | 
						|
using namespace gtsam;
 | 
						|
 | 
						|
namespace eq2D = simulated2D::equality_constraints;
 | 
						|
 | 
						|
static const double tol = 1e-5;
 | 
						|
 | 
						|
typedef PriorFactor<Pose2> PosePrior;
 | 
						|
typedef NonlinearEquality<Pose2> PoseNLE;
 | 
						|
typedef boost::shared_ptr<PoseNLE> shared_poseNLE;
 | 
						|
 | 
						|
static Symbol key('x',1);
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST ( NonlinearEquality, linearization ) {
 | 
						|
  Pose2 value = Pose2(2.1, 1.0, 2.0);
 | 
						|
  Values linearize;
 | 
						|
  linearize.insert(key, value);
 | 
						|
 | 
						|
  // create a nonlinear equality constraint
 | 
						|
  shared_poseNLE nle(new PoseNLE(key, value));
 | 
						|
 | 
						|
  // check linearize
 | 
						|
  SharedDiagonal constraintModel = noiseModel::Constrained::All(3);
 | 
						|
  JacobianFactor expLF(key, eye(3), zero(3), constraintModel);
 | 
						|
  GaussianFactor::shared_ptr actualLF = nle->linearize(linearize);
 | 
						|
  EXPECT(assert_equal((const GaussianFactor&)expLF, *actualLF));
 | 
						|
}
 | 
						|
 | 
						|
/* ********************************************************************** */
 | 
						|
TEST ( NonlinearEquality, linearization_pose ) {
 | 
						|
 | 
						|
  Symbol key('x',1);
 | 
						|
  Pose2 value;
 | 
						|
  Values config;
 | 
						|
  config.insert(key, value);
 | 
						|
 | 
						|
  // create a nonlinear equality constraint
 | 
						|
  shared_poseNLE nle(new PoseNLE(key, value));
 | 
						|
 | 
						|
  GaussianFactor::shared_ptr actualLF = nle->linearize(config);
 | 
						|
  EXPECT(true);
 | 
						|
}
 | 
						|
 | 
						|
/* ********************************************************************** */
 | 
						|
TEST ( NonlinearEquality, linearization_fail ) {
 | 
						|
  Pose2 value = Pose2(2.1, 1.0, 2.0);
 | 
						|
  Pose2 wrong = Pose2(2.1, 3.0, 4.0);
 | 
						|
  Values bad_linearize;
 | 
						|
  bad_linearize.insert(key, wrong);
 | 
						|
 | 
						|
  // create a nonlinear equality constraint
 | 
						|
  shared_poseNLE nle(new PoseNLE(key, value));
 | 
						|
 | 
						|
  // check linearize to ensure that it fails for bad linearization points
 | 
						|
  CHECK_EXCEPTION(nle->linearize(bad_linearize), std::invalid_argument);
 | 
						|
}
 | 
						|
 | 
						|
/* ********************************************************************** */
 | 
						|
TEST ( NonlinearEquality, linearization_fail_pose ) {
 | 
						|
 | 
						|
  Symbol key('x',1);
 | 
						|
  Pose2 value(2.0, 1.0, 2.0),
 | 
						|
      wrong(2.0, 3.0, 4.0);
 | 
						|
  Values bad_linearize;
 | 
						|
  bad_linearize.insert(key, wrong);
 | 
						|
 | 
						|
  // create a nonlinear equality constraint
 | 
						|
  shared_poseNLE nle(new PoseNLE(key, value));
 | 
						|
 | 
						|
  // check linearize to ensure that it fails for bad linearization points
 | 
						|
  CHECK_EXCEPTION(nle->linearize(bad_linearize), std::invalid_argument);
 | 
						|
}
 | 
						|
 | 
						|
/* ********************************************************************** */
 | 
						|
TEST ( NonlinearEquality, linearization_fail_pose_origin ) {
 | 
						|
 | 
						|
  Symbol key('x',1);
 | 
						|
  Pose2 value,
 | 
						|
      wrong(2.0, 3.0, 4.0);
 | 
						|
  Values bad_linearize;
 | 
						|
  bad_linearize.insert(key, wrong);
 | 
						|
 | 
						|
  // create a nonlinear equality constraint
 | 
						|
  shared_poseNLE nle(new PoseNLE(key, value));
 | 
						|
 | 
						|
  // check linearize to ensure that it fails for bad linearization points
 | 
						|
  CHECK_EXCEPTION(nle->linearize(bad_linearize), std::invalid_argument);
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST ( NonlinearEquality, error ) {
 | 
						|
  Pose2 value = Pose2(2.1, 1.0, 2.0);
 | 
						|
  Pose2 wrong = Pose2(2.1, 3.0, 4.0);
 | 
						|
  Values feasible, bad_linearize;
 | 
						|
  feasible.insert(key, value);
 | 
						|
  bad_linearize.insert(key, wrong);
 | 
						|
 | 
						|
  // create a nonlinear equality constraint
 | 
						|
  shared_poseNLE nle(new PoseNLE(key, value));
 | 
						|
 | 
						|
  // check error function outputs
 | 
						|
  Vector actual = nle->unwhitenedError(feasible);
 | 
						|
  EXPECT(assert_equal(actual, zero(3)));
 | 
						|
 | 
						|
  actual = nle->unwhitenedError(bad_linearize);
 | 
						|
  EXPECT(assert_equal(actual, repeat(3, std::numeric_limits<double>::infinity())));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST ( NonlinearEquality, equals ) {
 | 
						|
  Pose2 value1 = Pose2(2.1, 1.0, 2.0);
 | 
						|
  Pose2 value2 = Pose2(2.1, 3.0, 4.0);
 | 
						|
 | 
						|
  // create some constraints to compare
 | 
						|
  shared_poseNLE nle1(new PoseNLE(key, value1));
 | 
						|
  shared_poseNLE nle2(new PoseNLE(key, value1));
 | 
						|
  shared_poseNLE nle3(new PoseNLE(key, value2));
 | 
						|
 | 
						|
  // verify
 | 
						|
  EXPECT(nle1->equals(*nle2));  // basic equality = true
 | 
						|
  EXPECT(nle2->equals(*nle1));  // test symmetry of equals()
 | 
						|
  EXPECT(!nle1->equals(*nle3)); // test config
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST ( NonlinearEquality, allow_error_pose ) {
 | 
						|
  Symbol key1('x',1);
 | 
						|
  Pose2 feasible1(1.0, 2.0, 3.0);
 | 
						|
  double error_gain = 500.0;
 | 
						|
  PoseNLE nle(key1, feasible1, error_gain);
 | 
						|
 | 
						|
  // the unwhitened error should provide logmap to the feasible state
 | 
						|
  Pose2 badPoint1(0.0, 2.0, 3.0);
 | 
						|
  Vector actVec = nle.evaluateError(badPoint1);
 | 
						|
  Vector expVec = (Vector(3) << -0.989992, -0.14112, 0.0);
 | 
						|
  EXPECT(assert_equal(expVec, actVec, 1e-5));
 | 
						|
 | 
						|
  // the actual error should have a gain on it
 | 
						|
  Values config;
 | 
						|
  config.insert(key1, badPoint1);
 | 
						|
  double actError = nle.error(config);
 | 
						|
  DOUBLES_EQUAL(500.0, actError, 1e-9);
 | 
						|
 | 
						|
  // check linearization
 | 
						|
  GaussianFactor::shared_ptr actLinFactor = nle.linearize(config);
 | 
						|
  Matrix A1 = eye(3,3);
 | 
						|
  Vector b = expVec;
 | 
						|
  SharedDiagonal model = noiseModel::Constrained::All(3);
 | 
						|
  GaussianFactor::shared_ptr expLinFactor(new JacobianFactor(key1, A1, b, model));
 | 
						|
  EXPECT(assert_equal(*expLinFactor, *actLinFactor, 1e-5));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST ( NonlinearEquality, allow_error_optimize ) {
 | 
						|
  Symbol key1('x',1);
 | 
						|
  Pose2 feasible1(1.0, 2.0, 3.0);
 | 
						|
  double error_gain = 500.0;
 | 
						|
  PoseNLE nle(key1, feasible1, error_gain);
 | 
						|
 | 
						|
  // add to a graph
 | 
						|
  NonlinearFactorGraph graph;
 | 
						|
  graph += nle;
 | 
						|
 | 
						|
  // initialize away from the ideal
 | 
						|
  Pose2 initPose(0.0, 2.0, 3.0);
 | 
						|
  Values init;
 | 
						|
  init.insert(key1, initPose);
 | 
						|
 | 
						|
  // optimize
 | 
						|
  Ordering ordering;
 | 
						|
  ordering.push_back(key1);
 | 
						|
  Values result = LevenbergMarquardtOptimizer(graph, init, ordering).optimize();
 | 
						|
 | 
						|
  // verify
 | 
						|
  Values expected;
 | 
						|
  expected.insert(key1, feasible1);
 | 
						|
  EXPECT(assert_equal(expected, result));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST ( NonlinearEquality, allow_error_optimize_with_factors ) {
 | 
						|
 | 
						|
  // create a hard constraint
 | 
						|
  Symbol key1('x',1);
 | 
						|
  Pose2 feasible1(1.0, 2.0, 3.0);
 | 
						|
 | 
						|
  // initialize away from the ideal
 | 
						|
  Values init;
 | 
						|
  Pose2 initPose(0.0, 2.0, 3.0);
 | 
						|
  init.insert(key1, initPose);
 | 
						|
 | 
						|
  double error_gain = 500.0;
 | 
						|
  PoseNLE nle(key1, feasible1, error_gain);
 | 
						|
 | 
						|
  // create a soft prior that conflicts
 | 
						|
  PosePrior prior(key1, initPose, noiseModel::Isotropic::Sigma(3, 0.1));
 | 
						|
 | 
						|
  // add to a graph
 | 
						|
  NonlinearFactorGraph graph;
 | 
						|
  graph += nle;
 | 
						|
  graph += prior;
 | 
						|
 | 
						|
  // optimize
 | 
						|
  Ordering ordering;
 | 
						|
  ordering.push_back(key1);
 | 
						|
  Values actual = LevenbergMarquardtOptimizer(graph, init, ordering).optimize();
 | 
						|
 | 
						|
  // verify
 | 
						|
  Values expected;
 | 
						|
  expected.insert(key1, feasible1);
 | 
						|
  EXPECT(assert_equal(expected, actual));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
static SharedDiagonal hard_model = noiseModel::Constrained::All(2);
 | 
						|
static SharedDiagonal soft_model = noiseModel::Isotropic::Sigma(2, 1.0);
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( testNonlinearEqualityConstraint, unary_basics ) {
 | 
						|
  Point2 pt(1.0, 2.0);
 | 
						|
  Symbol key1('x',1);
 | 
						|
  double mu = 1000.0;
 | 
						|
  eq2D::UnaryEqualityConstraint constraint(pt, key, mu);
 | 
						|
 | 
						|
  Values config1;
 | 
						|
  config1.insert(key, pt);
 | 
						|
  EXPECT(constraint.active(config1));
 | 
						|
  EXPECT(assert_equal(zero(2), constraint.evaluateError(pt), tol));
 | 
						|
  EXPECT(assert_equal(zero(2), constraint.unwhitenedError(config1), tol));
 | 
						|
  EXPECT_DOUBLES_EQUAL(0.0, constraint.error(config1), tol);
 | 
						|
 | 
						|
  Values config2;
 | 
						|
  Point2 ptBad1(2.0, 2.0);
 | 
						|
  config2.insert(key, ptBad1);
 | 
						|
  EXPECT(constraint.active(config2));
 | 
						|
  EXPECT(assert_equal((Vector(2) << 1.0, 0.0), constraint.evaluateError(ptBad1), tol));
 | 
						|
  EXPECT(assert_equal((Vector(2) << 1.0, 0.0), constraint.unwhitenedError(config2), tol));
 | 
						|
  EXPECT_DOUBLES_EQUAL(500.0, constraint.error(config2), tol);
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( testNonlinearEqualityConstraint, unary_linearization ) {
 | 
						|
  Point2 pt(1.0, 2.0);
 | 
						|
  Symbol key1('x',1);
 | 
						|
  double mu = 1000.0;
 | 
						|
  eq2D::UnaryEqualityConstraint constraint(pt, key, mu);
 | 
						|
 | 
						|
  Values config1;
 | 
						|
  config1.insert(key, pt);
 | 
						|
  GaussianFactor::shared_ptr actual1 = constraint.linearize(config1);
 | 
						|
  GaussianFactor::shared_ptr expected1(new JacobianFactor(key, eye(2,2), zero(2), hard_model));
 | 
						|
  EXPECT(assert_equal(*expected1, *actual1, tol));
 | 
						|
 | 
						|
  Values config2;
 | 
						|
  Point2 ptBad(2.0, 2.0);
 | 
						|
  config2.insert(key, ptBad);
 | 
						|
  GaussianFactor::shared_ptr actual2 = constraint.linearize(config2);
 | 
						|
  GaussianFactor::shared_ptr expected2(new JacobianFactor(key, eye(2,2), (Vector(2) <<-1.0,0.0), hard_model));
 | 
						|
  EXPECT(assert_equal(*expected2, *actual2, tol));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( testNonlinearEqualityConstraint, unary_simple_optimization ) {
 | 
						|
  // create a single-node graph with a soft and hard constraint to
 | 
						|
  // ensure that the hard constraint overrides the soft constraint
 | 
						|
  Point2 truth_pt(1.0, 2.0);
 | 
						|
  Symbol key('x',1);
 | 
						|
  double mu = 10.0;
 | 
						|
  eq2D::UnaryEqualityConstraint::shared_ptr constraint(
 | 
						|
      new eq2D::UnaryEqualityConstraint(truth_pt, key, mu));
 | 
						|
 | 
						|
  Point2 badPt(100.0, -200.0);
 | 
						|
  simulated2D::Prior::shared_ptr factor(
 | 
						|
      new simulated2D::Prior(badPt, soft_model, key));
 | 
						|
 | 
						|
  NonlinearFactorGraph graph;
 | 
						|
  graph.push_back(constraint);
 | 
						|
  graph.push_back(factor);
 | 
						|
 | 
						|
  Values initValues;
 | 
						|
  initValues.insert(key, badPt);
 | 
						|
 | 
						|
  // verify error values
 | 
						|
  EXPECT(constraint->active(initValues));
 | 
						|
 | 
						|
  Values expected;
 | 
						|
  expected.insert(key, truth_pt);
 | 
						|
  EXPECT(constraint->active(expected));
 | 
						|
  EXPECT_DOUBLES_EQUAL(0.0, constraint->error(expected), tol);
 | 
						|
 | 
						|
  Values actual = LevenbergMarquardtOptimizer(graph, initValues).optimize();
 | 
						|
  EXPECT(assert_equal(expected, actual, tol));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( testNonlinearEqualityConstraint, odo_basics ) {
 | 
						|
  Point2 x1(1.0, 2.0), x2(2.0, 3.0), odom(1.0, 1.0);
 | 
						|
  Symbol key1('x',1), key2('x',2);
 | 
						|
  double mu = 1000.0;
 | 
						|
  eq2D::OdoEqualityConstraint constraint(odom, key1, key2, mu);
 | 
						|
 | 
						|
  Values config1;
 | 
						|
  config1.insert(key1, x1);
 | 
						|
  config1.insert(key2, x2);
 | 
						|
  EXPECT(constraint.active(config1));
 | 
						|
  EXPECT(assert_equal(zero(2), constraint.evaluateError(x1, x2), tol));
 | 
						|
  EXPECT(assert_equal(zero(2), constraint.unwhitenedError(config1), tol));
 | 
						|
  EXPECT_DOUBLES_EQUAL(0.0, constraint.error(config1), tol);
 | 
						|
 | 
						|
  Values config2;
 | 
						|
  Point2 x1bad(2.0, 2.0);
 | 
						|
  Point2 x2bad(2.0, 2.0);
 | 
						|
  config2.insert(key1, x1bad);
 | 
						|
  config2.insert(key2, x2bad);
 | 
						|
  EXPECT(constraint.active(config2));
 | 
						|
  EXPECT(assert_equal((Vector(2) << -1.0, -1.0), constraint.evaluateError(x1bad, x2bad), tol));
 | 
						|
  EXPECT(assert_equal((Vector(2) << -1.0, -1.0), constraint.unwhitenedError(config2), tol));
 | 
						|
  EXPECT_DOUBLES_EQUAL(1000.0, constraint.error(config2), tol);
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( testNonlinearEqualityConstraint, odo_linearization ) {
 | 
						|
  Point2 x1(1.0, 2.0), x2(2.0, 3.0), odom(1.0, 1.0);
 | 
						|
  Symbol key1('x',1), key2('x',2);
 | 
						|
  double mu = 1000.0;
 | 
						|
  eq2D::OdoEqualityConstraint constraint(odom, key1, key2, mu);
 | 
						|
 | 
						|
  Values config1;
 | 
						|
  config1.insert(key1, x1);
 | 
						|
  config1.insert(key2, x2);
 | 
						|
  GaussianFactor::shared_ptr actual1 = constraint.linearize(config1);
 | 
						|
  GaussianFactor::shared_ptr expected1(
 | 
						|
      new JacobianFactor(key1, -eye(2,2), key2,
 | 
						|
          eye(2,2), zero(2), hard_model));
 | 
						|
  EXPECT(assert_equal(*expected1, *actual1, tol));
 | 
						|
 | 
						|
  Values config2;
 | 
						|
  Point2 x1bad(2.0, 2.0);
 | 
						|
  Point2 x2bad(2.0, 2.0);
 | 
						|
  config2.insert(key1, x1bad);
 | 
						|
  config2.insert(key2, x2bad);
 | 
						|
  GaussianFactor::shared_ptr actual2 = constraint.linearize(config2);
 | 
						|
  GaussianFactor::shared_ptr expected2(
 | 
						|
      new JacobianFactor(key1, -eye(2,2), key2,
 | 
						|
          eye(2,2), (Vector(2) << 1.0, 1.0), hard_model));
 | 
						|
  EXPECT(assert_equal(*expected2, *actual2, tol));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( testNonlinearEqualityConstraint, odo_simple_optimize ) {
 | 
						|
  // create a two-node graph, connected by an odometry constraint, with
 | 
						|
  // a hard prior on one variable, and a conflicting soft prior
 | 
						|
  // on the other variable - the constraints should override the soft constraint
 | 
						|
  Point2 truth_pt1(1.0, 2.0), truth_pt2(3.0, 2.0);
 | 
						|
  Symbol key1('x',1), key2('x',2);
 | 
						|
 | 
						|
  // hard prior on x1
 | 
						|
  eq2D::UnaryEqualityConstraint::shared_ptr constraint1(
 | 
						|
      new eq2D::UnaryEqualityConstraint(truth_pt1, key1));
 | 
						|
 | 
						|
  // soft prior on x2
 | 
						|
  Point2 badPt(100.0, -200.0);
 | 
						|
  simulated2D::Prior::shared_ptr factor(
 | 
						|
      new simulated2D::Prior(badPt, soft_model, key2));
 | 
						|
 | 
						|
  // odometry constraint
 | 
						|
  eq2D::OdoEqualityConstraint::shared_ptr constraint2(
 | 
						|
      new eq2D::OdoEqualityConstraint(
 | 
						|
          truth_pt1.between(truth_pt2), key1, key2));
 | 
						|
 | 
						|
  NonlinearFactorGraph graph;
 | 
						|
  graph.push_back(constraint1);
 | 
						|
  graph.push_back(constraint2);
 | 
						|
  graph.push_back(factor);
 | 
						|
 | 
						|
  Values initValues;
 | 
						|
  initValues.insert(key1, Point2());
 | 
						|
  initValues.insert(key2, badPt);
 | 
						|
 | 
						|
  Values actual = LevenbergMarquardtOptimizer(graph, initValues).optimize();
 | 
						|
  Values expected;
 | 
						|
  expected.insert(key1, truth_pt1);
 | 
						|
  expected.insert(key2, truth_pt2);
 | 
						|
  CHECK(assert_equal(expected, actual, tol));
 | 
						|
}
 | 
						|
 | 
						|
/* ********************************************************************* */
 | 
						|
TEST (testNonlinearEqualityConstraint, two_pose ) {
 | 
						|
  /*
 | 
						|
   * Determining a ground truth linear system
 | 
						|
   * with two poses seeing one landmark, with each pose
 | 
						|
   * constrained to a particular value
 | 
						|
   */
 | 
						|
 | 
						|
  NonlinearFactorGraph graph;
 | 
						|
 | 
						|
  Symbol x1('x',1), x2('x',2);
 | 
						|
  Symbol l1('l',1), l2('l',2);
 | 
						|
  Point2 pt_x1(1.0, 1.0),
 | 
						|
       pt_x2(5.0, 6.0);
 | 
						|
  graph += eq2D::UnaryEqualityConstraint(pt_x1, x1);
 | 
						|
  graph += eq2D::UnaryEqualityConstraint(pt_x2, x2);
 | 
						|
 | 
						|
  Point2 z1(0.0, 5.0);
 | 
						|
  SharedNoiseModel sigma(noiseModel::Isotropic::Sigma(2, 0.1));
 | 
						|
  graph += simulated2D::Measurement(z1, sigma, x1,l1);
 | 
						|
 | 
						|
  Point2 z2(-4.0, 0.0);
 | 
						|
  graph += simulated2D::Measurement(z2, sigma, x2,l2);
 | 
						|
 | 
						|
  graph += eq2D::PointEqualityConstraint(l1, l2);
 | 
						|
 | 
						|
  Values initialEstimate;
 | 
						|
  initialEstimate.insert(x1, pt_x1);
 | 
						|
  initialEstimate.insert(x2, Point2());
 | 
						|
  initialEstimate.insert(l1, Point2(1.0, 6.0)); // ground truth
 | 
						|
  initialEstimate.insert(l2, Point2(-4.0, 0.0)); // starting with a separate reference frame
 | 
						|
 | 
						|
  Values actual = LevenbergMarquardtOptimizer(graph, initialEstimate).optimize();
 | 
						|
 | 
						|
  Values expected;
 | 
						|
  expected.insert(x1, pt_x1);
 | 
						|
  expected.insert(l1, Point2(1.0, 6.0));
 | 
						|
  expected.insert(l2, Point2(1.0, 6.0));
 | 
						|
  expected.insert(x2, Point2(5.0, 6.0));
 | 
						|
  CHECK(assert_equal(expected, actual, 1e-5));
 | 
						|
}
 | 
						|
 | 
						|
/* ********************************************************************* */
 | 
						|
TEST (testNonlinearEqualityConstraint, map_warp ) {
 | 
						|
  // get a graph
 | 
						|
  NonlinearFactorGraph graph;
 | 
						|
 | 
						|
  // keys
 | 
						|
  Symbol x1('x',1), x2('x',2);
 | 
						|
  Symbol l1('l',1), l2('l',2);
 | 
						|
 | 
						|
  // constant constraint on x1
 | 
						|
  Point2 pose1(1.0, 1.0);
 | 
						|
  graph += eq2D::UnaryEqualityConstraint(pose1, x1);
 | 
						|
 | 
						|
  SharedDiagonal sigma = noiseModel::Isotropic::Sigma(2, 0.1);
 | 
						|
 | 
						|
  // measurement from x1 to l1
 | 
						|
  Point2 z1(0.0, 5.0);
 | 
						|
  graph += simulated2D::Measurement(z1, sigma, x1, l1);
 | 
						|
 | 
						|
  // measurement from x2 to l2
 | 
						|
  Point2 z2(-4.0, 0.0);
 | 
						|
  graph += simulated2D::Measurement(z2, sigma, x2, l2);
 | 
						|
 | 
						|
  // equality constraint between l1 and l2
 | 
						|
  graph += eq2D::PointEqualityConstraint(l1, l2);
 | 
						|
 | 
						|
  // create an initial estimate
 | 
						|
  Values initialEstimate;
 | 
						|
  initialEstimate.insert(x1, Point2( 1.0, 1.0));
 | 
						|
  initialEstimate.insert(l1, Point2( 1.0, 6.0));
 | 
						|
  initialEstimate.insert(l2, Point2(-4.0, 0.0)); // starting with a separate reference frame
 | 
						|
  initialEstimate.insert(x2, Point2( 0.0, 0.0)); // other pose starts at origin
 | 
						|
 | 
						|
  // optimize
 | 
						|
  Values actual = LevenbergMarquardtOptimizer(graph, initialEstimate).optimize();
 | 
						|
 | 
						|
  Values expected;
 | 
						|
  expected.insert(x1, Point2(1.0, 1.0));
 | 
						|
  expected.insert(l1, Point2(1.0, 6.0));
 | 
						|
  expected.insert(l2, Point2(1.0, 6.0));
 | 
						|
  expected.insert(x2, Point2(5.0, 6.0));
 | 
						|
  CHECK(assert_equal(expected, actual, tol));
 | 
						|
}
 | 
						|
 | 
						|
// make a realistic calibration matrix
 | 
						|
static double fov = 60; // degrees
 | 
						|
static int w=640,h=480;
 | 
						|
static Cal3_S2 K(fov,w,h);
 | 
						|
static boost::shared_ptr<Cal3_S2> shK(new Cal3_S2(K));
 | 
						|
 | 
						|
// typedefs for visual SLAM example
 | 
						|
typedef NonlinearFactorGraph VGraph;
 | 
						|
 | 
						|
// factors for visual slam
 | 
						|
typedef NonlinearEquality2<Point3> Point3Equality;
 | 
						|
 | 
						|
/* ********************************************************************* */
 | 
						|
TEST (testNonlinearEqualityConstraint, stereo_constrained ) {
 | 
						|
 | 
						|
  // create initial estimates
 | 
						|
  Rot3 faceDownY((Matrix)(Matrix(3,3) <<
 | 
						|
      1.0, 0.0, 0.0,
 | 
						|
      0.0, 0.0, 1.0,
 | 
						|
      0.0, -1.0, 0.0));
 | 
						|
  Pose3 pose1(faceDownY, Point3()); // origin, left camera
 | 
						|
  SimpleCamera camera1(pose1, K);
 | 
						|
  Pose3 pose2(faceDownY, Point3(2.0, 0.0, 0.0)); // 2 units to the left
 | 
						|
  SimpleCamera camera2(pose2, K);
 | 
						|
  Point3 landmark(1.0, 5.0, 0.0); //centered between the cameras, 5 units away
 | 
						|
 | 
						|
  // keys
 | 
						|
  Symbol x1('x',1), x2('x',2);
 | 
						|
  Symbol l1('l',1), l2('l',2);
 | 
						|
 | 
						|
  // create graph
 | 
						|
  VGraph graph;
 | 
						|
 | 
						|
  // create equality constraints for poses
 | 
						|
  graph += NonlinearEquality<Pose3>(x1, camera1.pose());
 | 
						|
  graph += NonlinearEquality<Pose3>(x2, camera2.pose());
 | 
						|
 | 
						|
  // create  factors
 | 
						|
  SharedDiagonal vmodel = noiseModel::Unit::Create(2);
 | 
						|
  graph += GenericProjectionFactor<Pose3,Point3,Cal3_S2>(camera1.project(landmark), vmodel, x1, l1, shK);
 | 
						|
  graph += GenericProjectionFactor<Pose3,Point3,Cal3_S2>(camera2.project(landmark), vmodel, x2, l2, shK);
 | 
						|
 | 
						|
  // add equality constraint
 | 
						|
  graph += Point3Equality(l1, l2);
 | 
						|
 | 
						|
  // create initial data
 | 
						|
  Point3 landmark1(0.5, 5.0, 0.0);
 | 
						|
  Point3 landmark2(1.5, 5.0, 0.0);
 | 
						|
 | 
						|
  Values initValues;
 | 
						|
  initValues.insert(x1, pose1);
 | 
						|
  initValues.insert(x2, pose2);
 | 
						|
  initValues.insert(l1, landmark1);
 | 
						|
  initValues.insert(l2, landmark2);
 | 
						|
 | 
						|
  // optimize
 | 
						|
  Values actual = LevenbergMarquardtOptimizer(graph, initValues).optimize();
 | 
						|
 | 
						|
  // create config
 | 
						|
  Values truthValues;
 | 
						|
  truthValues.insert(x1, camera1.pose());
 | 
						|
  truthValues.insert(x2, camera2.pose());
 | 
						|
  truthValues.insert(l1, landmark);
 | 
						|
  truthValues.insert(l2, landmark);
 | 
						|
 | 
						|
  // check if correct
 | 
						|
  CHECK(assert_equal(truthValues, actual, 1e-5));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
 | 
						|
/* ************************************************************************* */
 |