876 lines
28 KiB
C++
876 lines
28 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file dataset.cpp
|
|
* @date Jan 22, 2010
|
|
* @author nikai, Luca Carlone
|
|
* @brief utility functions for loading datasets
|
|
*/
|
|
|
|
#include <gtsam/slam/dataset.h>
|
|
#include <gtsam/slam/BetweenFactor.h>
|
|
#include <gtsam/slam/BearingRangeFactor.h>
|
|
#include <gtsam/geometry/Pose2.h>
|
|
#include <gtsam/linear/Sampler.h>
|
|
#include <gtsam/inference/Symbol.h>
|
|
|
|
#include <boost/filesystem.hpp>
|
|
|
|
#include <fstream>
|
|
#include <sstream>
|
|
#include <cstdlib>
|
|
|
|
using namespace std;
|
|
namespace fs = boost::filesystem;
|
|
using namespace gtsam::symbol_shorthand;
|
|
|
|
#define LINESIZE 81920
|
|
|
|
namespace gtsam {
|
|
|
|
#ifndef MATLAB_MEX_FILE
|
|
/* ************************************************************************* */
|
|
string findExampleDataFile(const string& name) {
|
|
// Search source tree and installed location
|
|
vector<string> rootsToSearch;
|
|
rootsToSearch.push_back(GTSAM_SOURCE_TREE_DATASET_DIR); // Defined by CMake, see gtsam/gtsam/CMakeLists.txt
|
|
rootsToSearch.push_back(GTSAM_INSTALLED_DATASET_DIR); // Defined by CMake, see gtsam/gtsam/CMakeLists.txt
|
|
|
|
// Search for filename as given, and with .graph and .txt extensions
|
|
vector<string> namesToSearch;
|
|
namesToSearch.push_back(name);
|
|
namesToSearch.push_back(name + ".graph");
|
|
namesToSearch.push_back(name + ".txt");
|
|
namesToSearch.push_back(name + ".out");
|
|
|
|
// Find first name that exists
|
|
BOOST_FOREACH(const fs::path& root, rootsToSearch) {
|
|
BOOST_FOREACH(const fs::path& name, namesToSearch) {
|
|
if (fs::is_regular_file(root / name))
|
|
return (root / name).string();
|
|
}
|
|
}
|
|
|
|
// If we did not return already, then we did not find the file
|
|
throw
|
|
invalid_argument(
|
|
"gtsam::findExampleDataFile could not find a matching file in\n"
|
|
SOURCE_TREE_DATASET_DIR " or\n"
|
|
INSTALLED_DATASET_DIR " named\n" +
|
|
name + ", " + name + ".graph, or " + name + ".txt");
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
string createRewrittenFileName(const string& name) {
|
|
// Search source tree and installed location
|
|
if (!exists(fs::path(name))) {
|
|
throw invalid_argument(
|
|
"gtsam::createRewrittenFileName could not find a matching file in\n"
|
|
+ name);
|
|
}
|
|
|
|
fs::path p(name);
|
|
fs::path newpath = fs::path(p.parent_path().string())
|
|
/ fs::path(p.stem().string() + "-rewritten.txt");
|
|
|
|
return newpath.string();
|
|
}
|
|
/* ************************************************************************* */
|
|
#endif
|
|
|
|
/* ************************************************************************* */
|
|
GraphAndValues load2D(pair<string, SharedNoiseModel> dataset, int maxID,
|
|
bool addNoise, bool smart, NoiseFormat noiseFormat,
|
|
KernelFunctionType kernelFunctionType) {
|
|
return load2D(dataset.first, dataset.second, maxID, addNoise, smart,
|
|
noiseFormat, kernelFunctionType);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Read noise parameters and interpret them according to flags
|
|
static SharedNoiseModel readNoiseModel(ifstream& is, bool smart,
|
|
NoiseFormat noiseFormat, KernelFunctionType kernelFunctionType) {
|
|
double v1, v2, v3, v4, v5, v6;
|
|
is >> v1 >> v2 >> v3 >> v4 >> v5 >> v6;
|
|
|
|
// Read matrix and check that diagonal entries are non-zero
|
|
Matrix M(3, 3);
|
|
switch (noiseFormat) {
|
|
case NoiseFormatG2O:
|
|
case NoiseFormatCOV:
|
|
// i.e., [ v1 v2 v3; v2' v4 v5; v3' v5' v6 ]
|
|
if (v1 == 0.0 || v4 == 0.0 || v6 == 0.0)
|
|
throw runtime_error(
|
|
"load2D::readNoiseModel looks like this is not G2O matrix order");
|
|
M << v1, v2, v3, v2, v4, v5, v3, v5, v6;
|
|
break;
|
|
case NoiseFormatTORO:
|
|
case NoiseFormatGRAPH:
|
|
// http://www.openslam.org/toro.html
|
|
// inf_ff inf_fs inf_ss inf_rr inf_fr inf_sr
|
|
// i.e., [ v1 v2 v5; v2' v3 v6; v5' v6' v4 ]
|
|
if (v1 == 0.0 || v3 == 0.0 || v4 == 0.0)
|
|
throw invalid_argument(
|
|
"load2D::readNoiseModel looks like this is not TORO matrix order");
|
|
M << v1, v2, v5, v2, v3, v6, v5, v6, v4;
|
|
break;
|
|
default:
|
|
throw runtime_error("load2D: invalid noise format");
|
|
}
|
|
|
|
// Now, create a Gaussian noise model
|
|
// The smart flag will try to detect a simpler model, e.g., unit
|
|
SharedNoiseModel model;
|
|
switch (noiseFormat) {
|
|
case NoiseFormatG2O:
|
|
case NoiseFormatTORO:
|
|
// In both cases, what is stored in file is the information matrix
|
|
model = noiseModel::Gaussian::Information(M, smart);
|
|
break;
|
|
case NoiseFormatGRAPH:
|
|
case NoiseFormatCOV:
|
|
// These cases expect covariance matrix
|
|
model = noiseModel::Gaussian::Covariance(M, smart);
|
|
break;
|
|
default:
|
|
throw invalid_argument("load2D: invalid noise format");
|
|
}
|
|
|
|
switch (kernelFunctionType) {
|
|
case KernelFunctionTypeNONE:
|
|
return model;
|
|
break;
|
|
case KernelFunctionTypeHUBER:
|
|
return noiseModel::Robust::Create(
|
|
noiseModel::mEstimator::Huber::Create(1.345), model);
|
|
break;
|
|
case KernelFunctionTypeTUKEY:
|
|
return noiseModel::Robust::Create(
|
|
noiseModel::mEstimator::Tukey::Create(4.6851), model);
|
|
break;
|
|
default:
|
|
throw invalid_argument("load2D: invalid kernel function type");
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
GraphAndValues load2D(const string& filename, SharedNoiseModel model, int maxID,
|
|
bool addNoise, bool smart, NoiseFormat noiseFormat,
|
|
KernelFunctionType kernelFunctionType) {
|
|
|
|
ifstream is(filename.c_str());
|
|
if (!is)
|
|
throw invalid_argument("load2D: can not find file " + filename);
|
|
|
|
Values::shared_ptr initial(new Values);
|
|
NonlinearFactorGraph::shared_ptr graph(new NonlinearFactorGraph);
|
|
|
|
string tag;
|
|
|
|
// load the poses
|
|
while (!is.eof()) {
|
|
if (!(is >> tag))
|
|
break;
|
|
|
|
if ((tag == "VERTEX2") || (tag == "VERTEX_SE2") || (tag == "VERTEX")) {
|
|
Key id;
|
|
double x, y, yaw;
|
|
is >> id >> x >> y >> yaw;
|
|
|
|
// optional filter
|
|
if (maxID && id >= maxID)
|
|
continue;
|
|
|
|
initial->insert(id, Pose2(x, y, yaw));
|
|
}
|
|
is.ignore(LINESIZE, '\n');
|
|
}
|
|
is.clear(); /* clears the end-of-file and error flags */
|
|
is.seekg(0, ios::beg);
|
|
|
|
// If asked, create a sampler with random number generator
|
|
Sampler sampler;
|
|
if (addNoise) {
|
|
noiseModel::Diagonal::shared_ptr noise;
|
|
if (model)
|
|
noise = boost::dynamic_pointer_cast<noiseModel::Diagonal>(model);
|
|
if (!noise)
|
|
throw invalid_argument(
|
|
"gtsam::load2D: invalid noise model for adding noise"
|
|
"(current version assumes diagonal noise model)!");
|
|
sampler = Sampler(noise);
|
|
}
|
|
|
|
// Parse the pose constraints
|
|
int id1, id2;
|
|
bool haveLandmark = false;
|
|
while (!is.eof()) {
|
|
if (!(is >> tag))
|
|
break;
|
|
|
|
if ((tag == "EDGE2") || (tag == "EDGE") || (tag == "EDGE_SE2")
|
|
|| (tag == "ODOMETRY")) {
|
|
|
|
// Read transform
|
|
double x, y, yaw;
|
|
is >> id1 >> id2 >> x >> y >> yaw;
|
|
Pose2 l1Xl2(x, y, yaw);
|
|
|
|
// read noise model
|
|
SharedNoiseModel modelInFile = readNoiseModel(is, smart, noiseFormat,
|
|
kernelFunctionType);
|
|
|
|
// optional filter
|
|
if (maxID && (id1 >= maxID || id2 >= maxID))
|
|
continue;
|
|
|
|
if (!model)
|
|
model = modelInFile;
|
|
|
|
if (addNoise)
|
|
l1Xl2 = l1Xl2.retract(sampler.sample());
|
|
|
|
// Insert vertices if pure odometry file
|
|
if (!initial->exists(id1))
|
|
initial->insert(id1, Pose2());
|
|
if (!initial->exists(id2))
|
|
initial->insert(id2, initial->at<Pose2>(id1) * l1Xl2);
|
|
|
|
NonlinearFactor::shared_ptr factor(
|
|
new BetweenFactor<Pose2>(id1, id2, l1Xl2, model));
|
|
graph->push_back(factor);
|
|
}
|
|
// Parse measurements
|
|
double bearing, range, bearing_std, range_std;
|
|
|
|
// A bearing-range measurement
|
|
if (tag == "BR") {
|
|
is >> id1 >> id2 >> bearing >> range >> bearing_std >> range_std;
|
|
}
|
|
|
|
// A landmark measurement, TODO Frank says: don't know why is converted to bearing-range
|
|
if (tag == "LANDMARK") {
|
|
double lmx, lmy;
|
|
double v1, v2, v3;
|
|
|
|
is >> id1 >> id2 >> lmx >> lmy >> v1 >> v2 >> v3;
|
|
|
|
// Convert x,y to bearing,range
|
|
bearing = atan2(lmy, lmx);
|
|
range = sqrt(lmx * lmx + lmy * lmy);
|
|
|
|
// In our experience, the x-y covariance on landmark sightings is not very good, so assume
|
|
// it describes the uncertainty at a range of 10m, and convert that to bearing/range uncertainty.
|
|
if (std::abs(v1 - v3) < 1e-4) {
|
|
bearing_std = sqrt(v1 / 10.0);
|
|
range_std = sqrt(v1);
|
|
} else {
|
|
bearing_std = 1;
|
|
range_std = 1;
|
|
if (!haveLandmark) {
|
|
cout
|
|
<< "Warning: load2D is a very simple dataset loader and is ignoring the\n"
|
|
"non-uniform covariance on LANDMARK measurements in this file."
|
|
<< endl;
|
|
haveLandmark = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Do some common stuff for bearing-range measurements
|
|
if (tag == "LANDMARK" || tag == "BR") {
|
|
|
|
// optional filter
|
|
if (maxID && id1 >= maxID)
|
|
continue;
|
|
|
|
// Create noise model
|
|
noiseModel::Diagonal::shared_ptr measurementNoise =
|
|
noiseModel::Diagonal::Sigmas((Vector(2) << bearing_std, range_std));
|
|
|
|
// Add to graph
|
|
*graph += BearingRangeFactor<Pose2, Point2>(id1, L(id2), bearing, range,
|
|
measurementNoise);
|
|
|
|
// Insert poses or points if they do not exist yet
|
|
if (!initial->exists(id1))
|
|
initial->insert(id1, Pose2());
|
|
if (!initial->exists(L(id2))) {
|
|
Pose2 pose = initial->at<Pose2>(id1);
|
|
Point2 local(cos(bearing) * range, sin(bearing) * range);
|
|
Point2 global = pose.transform_from(local);
|
|
initial->insert(L(id2), global);
|
|
}
|
|
}
|
|
is.ignore(LINESIZE, '\n');
|
|
}
|
|
|
|
return make_pair(graph, initial);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
GraphAndValues load2D_robust(const string& filename,
|
|
noiseModel::Base::shared_ptr& model, int maxID) {
|
|
return load2D(filename, model, maxID);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void save2D(const NonlinearFactorGraph& graph, const Values& config,
|
|
const noiseModel::Diagonal::shared_ptr model, const string& filename) {
|
|
|
|
fstream stream(filename.c_str(), fstream::out);
|
|
|
|
// save poses
|
|
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, config) {
|
|
const Pose2& pose = dynamic_cast<const Pose2&>(key_value.value);
|
|
stream << "VERTEX2 " << key_value.key << " " << pose.x() << " " << pose.y()
|
|
<< " " << pose.theta() << endl;
|
|
}
|
|
|
|
// save edges
|
|
Matrix R = model->R();
|
|
Matrix RR = trans(R) * R; //prod(trans(R),R);
|
|
BOOST_FOREACH(boost::shared_ptr<NonlinearFactor> factor_, graph) {
|
|
boost::shared_ptr<BetweenFactor<Pose2> > factor =
|
|
boost::dynamic_pointer_cast<BetweenFactor<Pose2> >(factor_);
|
|
if (!factor)
|
|
continue;
|
|
|
|
Pose2 pose = factor->measured().inverse();
|
|
stream << "EDGE2 " << factor->key2() << " " << factor->key1() << " "
|
|
<< pose.x() << " " << pose.y() << " " << pose.theta() << " " << RR(0, 0)
|
|
<< " " << RR(0, 1) << " " << RR(1, 1) << " " << RR(2, 2) << " "
|
|
<< RR(0, 2) << " " << RR(1, 2) << endl;
|
|
}
|
|
|
|
stream.close();
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
GraphAndValues readG2o(const string& g2oFile, const bool is3D,
|
|
KernelFunctionType kernelFunctionType) {
|
|
// just call load2D
|
|
int maxID = 0;
|
|
bool addNoise = false;
|
|
bool smart = true;
|
|
|
|
if(is3D)
|
|
return load3D(g2oFile);
|
|
|
|
return load2D(g2oFile, SharedNoiseModel(), maxID, addNoise, smart,
|
|
NoiseFormatG2O, kernelFunctionType);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void writeG2o(const NonlinearFactorGraph& graph, const Values& estimate,
|
|
const string& filename) {
|
|
|
|
fstream stream(filename.c_str(), fstream::out);
|
|
|
|
// save 2D & 3D poses
|
|
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, estimate) {
|
|
|
|
const Pose2* pose2D = dynamic_cast<const Pose2*>(&key_value.value);
|
|
if(pose2D){
|
|
stream << "VERTEX_SE2 " << key_value.key << " " << pose2D->x() << " "
|
|
<< pose2D->y() << " " << pose2D->theta() << endl;
|
|
}
|
|
const Pose3* pose3D = dynamic_cast<const Pose3*>(&key_value.value);
|
|
if(pose3D){
|
|
Point3 p = pose3D->translation();
|
|
Rot3 R = pose3D->rotation();
|
|
stream << "VERTEX_SE3:QUAT " << key_value.key << " " << p.x() << " " << p.y() << " " << p.z()
|
|
<< " " << R.toQuaternion().x() << " " << R.toQuaternion().y() << " " << R.toQuaternion().z()
|
|
<< " " << R.toQuaternion().w() << endl;
|
|
}
|
|
}
|
|
|
|
// save edges (2D or 3D)
|
|
BOOST_FOREACH(boost::shared_ptr<NonlinearFactor> factor_, graph) {
|
|
boost::shared_ptr<BetweenFactor<Pose2> > factor =
|
|
boost::dynamic_pointer_cast<BetweenFactor<Pose2> >(factor_);
|
|
if (factor){
|
|
SharedNoiseModel model = factor->get_noiseModel();
|
|
boost::shared_ptr<noiseModel::Gaussian> gaussianModel =
|
|
boost::dynamic_pointer_cast<noiseModel::Gaussian>(model);
|
|
if (!gaussianModel){
|
|
model->print("model\n");
|
|
throw invalid_argument("writeG2o: invalid noise model!");
|
|
}
|
|
Matrix Info = gaussianModel->R().transpose() * gaussianModel->R();
|
|
Pose2 pose = factor->measured(); //.inverse();
|
|
stream << "EDGE_SE2 " << factor->key1() << " " << factor->key2() << " "
|
|
<< pose.x() << " " << pose.y() << " " << pose.theta();
|
|
for (int i = 0; i < 3; i++){
|
|
for (int j = i; j < 3; j++){
|
|
stream << " " << Info(i, j);
|
|
}
|
|
}
|
|
stream << endl;
|
|
}
|
|
|
|
boost::shared_ptr< BetweenFactor<Pose3> > factor3D =
|
|
boost::dynamic_pointer_cast< BetweenFactor<Pose3> >(factor_);
|
|
|
|
if (factor3D){
|
|
SharedNoiseModel model = factor3D->get_noiseModel();
|
|
|
|
boost::shared_ptr<noiseModel::Gaussian> gaussianModel =
|
|
boost::dynamic_pointer_cast<noiseModel::Gaussian>(model);
|
|
if (!gaussianModel){
|
|
model->print("model\n");
|
|
throw invalid_argument("writeG2o: invalid noise model!");
|
|
}
|
|
Matrix Info = gaussianModel->R().transpose() * gaussianModel->R();
|
|
Pose3 pose3D = factor3D->measured();
|
|
Point3 p = pose3D.translation();
|
|
Rot3 R = pose3D.rotation();
|
|
|
|
stream << "EDGE_SE3:QUAT " << factor3D->key1() << " " << factor3D->key2() << " "
|
|
<< p.x() << " " << p.y() << " " << p.z() << " " << R.toQuaternion().x()
|
|
<< " " << R.toQuaternion().y() << " " << R.toQuaternion().z() << " " << R.toQuaternion().w();
|
|
|
|
Matrix InfoG2o = eye(6);
|
|
InfoG2o.block(0,0,3,3) = Info.block(3,3,3,3); // cov translation
|
|
InfoG2o.block(3,3,3,3) = Info.block(0,0,3,3); // cov rotation
|
|
InfoG2o.block(0,3,3,3) = Info.block(0,3,3,3); // off diagonal
|
|
InfoG2o.block(3,0,3,3) = Info.block(3,0,3,3); // off diagonal
|
|
|
|
for (int i = 0; i < 6; i++){
|
|
for (int j = i; j < 6; j++){
|
|
stream << " " << InfoG2o(i, j);
|
|
}
|
|
}
|
|
stream << endl;
|
|
}
|
|
}
|
|
stream.close();
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
GraphAndValues load3D(const string& filename) {
|
|
|
|
ifstream is(filename.c_str());
|
|
if (!is)
|
|
throw invalid_argument("load3D: can not find file " + filename);
|
|
|
|
Values::shared_ptr initial(new Values);
|
|
NonlinearFactorGraph::shared_ptr graph(new NonlinearFactorGraph);
|
|
|
|
while (!is.eof()) {
|
|
char buf[LINESIZE];
|
|
is.getline(buf, LINESIZE);
|
|
istringstream ls(buf);
|
|
string tag;
|
|
ls >> tag;
|
|
|
|
if (tag == "VERTEX3") {
|
|
Key id;
|
|
double x, y, z, roll, pitch, yaw;
|
|
ls >> id >> x >> y >> z >> roll >> pitch >> yaw;
|
|
Rot3 R = Rot3::ypr(yaw,pitch,roll);
|
|
Point3 t = Point3(x, y, z);
|
|
initial->insert(id, Pose3(R,t));
|
|
}
|
|
if (tag == "VERTEX_SE3:QUAT") {
|
|
Key id;
|
|
double x, y, z, qx, qy, qz, qw;
|
|
ls >> id >> x >> y >> z >> qx >> qy >> qz >> qw;
|
|
Rot3 R = Rot3::quaternion(qw, qx, qy, qz);
|
|
Point3 t = Point3(x, y, z);
|
|
initial->insert(id, Pose3(R,t));
|
|
}
|
|
}
|
|
is.clear(); /* clears the end-of-file and error flags */
|
|
is.seekg(0, ios::beg);
|
|
|
|
while (!is.eof()) {
|
|
char buf[LINESIZE];
|
|
is.getline(buf, LINESIZE);
|
|
istringstream ls(buf);
|
|
string tag;
|
|
ls >> tag;
|
|
|
|
if (tag == "EDGE3") {
|
|
Key id1, id2;
|
|
double x, y, z, roll, pitch, yaw;
|
|
ls >> id1 >> id2 >> x >> y >> z >> roll >> pitch >> yaw;
|
|
Rot3 R = Rot3::ypr(yaw,pitch,roll);
|
|
Point3 t = Point3(x, y, z);
|
|
Matrix m = eye(6);
|
|
for (int i = 0; i < 6; i++)
|
|
for (int j = i; j < 6; j++)
|
|
ls >> m(i, j);
|
|
SharedNoiseModel model = noiseModel::Gaussian::Information(m);
|
|
NonlinearFactor::shared_ptr factor(
|
|
new BetweenFactor<Pose3>(id1, id2, Pose3(R,t), model));
|
|
graph->push_back(factor);
|
|
}
|
|
if (tag == "EDGE_SE3:QUAT") {
|
|
Matrix m = eye(6);
|
|
Key id1, id2;
|
|
double x, y, z, qx, qy, qz, qw;
|
|
ls >> id1 >> id2 >> x >> y >> z >> qx >> qy >> qz >> qw;
|
|
Rot3 R = Rot3::quaternion(qw, qx, qy, qz);
|
|
Point3 t = Point3(x, y, z);
|
|
for (int i = 0; i < 6; i++){
|
|
for (int j = i; j < 6; j++){
|
|
double mij;
|
|
ls >> mij;
|
|
m(i, j) = mij;
|
|
m(j, i) = mij;
|
|
}
|
|
}
|
|
Matrix mgtsam = eye(6);
|
|
mgtsam.block(0,0,3,3) = m.block(3,3,3,3); // cov rotation
|
|
mgtsam.block(3,3,3,3) = m.block(0,0,3,3); // cov translation
|
|
mgtsam.block(0,3,3,3) = m.block(0,3,3,3); // off diagonal
|
|
mgtsam.block(3,0,3,3) = m.block(3,0,3,3); // off diagonal
|
|
SharedNoiseModel model = noiseModel::Gaussian::Information(mgtsam);
|
|
NonlinearFactor::shared_ptr factor(new BetweenFactor<Pose3>(id1, id2, Pose3(R,t), model));
|
|
graph->push_back(factor);
|
|
}
|
|
}
|
|
return make_pair(graph, initial);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Rot3 openGLFixedRotation() { // this is due to different convention for cameras in gtsam and openGL
|
|
/* R = [ 1 0 0
|
|
* 0 -1 0
|
|
* 0 0 -1]
|
|
*/
|
|
Matrix3 R_mat = Matrix3::Zero(3, 3);
|
|
R_mat(0, 0) = 1.0;
|
|
R_mat(1, 1) = -1.0;
|
|
R_mat(2, 2) = -1.0;
|
|
return Rot3(R_mat);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Pose3 openGL2gtsam(const Rot3& R, double tx, double ty, double tz) {
|
|
Rot3 R90 = openGLFixedRotation();
|
|
Rot3 wRc = (R.inverse()).compose(R90);
|
|
|
|
// Our camera-to-world translation wTc = -R'*t
|
|
return Pose3(wRc, R.unrotate(Point3(-tx, -ty, -tz)));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Pose3 gtsam2openGL(const Rot3& R, double tx, double ty, double tz) {
|
|
Rot3 R90 = openGLFixedRotation();
|
|
Rot3 cRw_openGL = R90.compose(R.inverse());
|
|
Point3 t_openGL = cRw_openGL.rotate(Point3(-tx, -ty, -tz));
|
|
return Pose3(cRw_openGL, t_openGL);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Pose3 gtsam2openGL(const Pose3& PoseGTSAM) {
|
|
return gtsam2openGL(PoseGTSAM.rotation(), PoseGTSAM.x(), PoseGTSAM.y(),
|
|
PoseGTSAM.z());
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
bool readBundler(const string& filename, SfM_data &data) {
|
|
// Load the data file
|
|
ifstream is(filename.c_str(), ifstream::in);
|
|
if (!is) {
|
|
cout << "Error in readBundler: can not find the file!!" << endl;
|
|
return false;
|
|
}
|
|
|
|
// Ignore the first line
|
|
char aux[500];
|
|
is.getline(aux, 500);
|
|
|
|
// Get the number of camera poses and 3D points
|
|
size_t nrPoses, nrPoints;
|
|
is >> nrPoses >> nrPoints;
|
|
|
|
// Get the information for the camera poses
|
|
for (size_t i = 0; i < nrPoses; i++) {
|
|
// Get the focal length and the radial distortion parameters
|
|
float f, k1, k2;
|
|
is >> f >> k1 >> k2;
|
|
Cal3Bundler K(f, k1, k2);
|
|
|
|
// Get the rotation matrix
|
|
float r11, r12, r13;
|
|
float r21, r22, r23;
|
|
float r31, r32, r33;
|
|
is >> r11 >> r12 >> r13 >> r21 >> r22 >> r23 >> r31 >> r32 >> r33;
|
|
|
|
// Bundler-OpenGL rotation matrix
|
|
Rot3 R(r11, r12, r13, r21, r22, r23, r31, r32, r33);
|
|
|
|
// Check for all-zero R, in which case quit
|
|
if (r11 == 0 && r12 == 0 && r13 == 0) {
|
|
cout << "Error in readBundler: zero rotation matrix for pose " << i
|
|
<< endl;
|
|
return false;
|
|
}
|
|
|
|
// Get the translation vector
|
|
float tx, ty, tz;
|
|
is >> tx >> ty >> tz;
|
|
|
|
Pose3 pose = openGL2gtsam(R, tx, ty, tz);
|
|
|
|
data.cameras.push_back(SfM_Camera(pose, K));
|
|
}
|
|
|
|
// Get the information for the 3D points
|
|
for (size_t j = 0; j < nrPoints; j++) {
|
|
SfM_Track track;
|
|
|
|
// Get the 3D position
|
|
float x, y, z;
|
|
is >> x >> y >> z;
|
|
track.p = Point3(x, y, z);
|
|
|
|
// Get the color information
|
|
float r, g, b;
|
|
is >> r >> g >> b;
|
|
track.r = r / 255.f;
|
|
track.g = g / 255.f;
|
|
track.b = b / 255.f;
|
|
|
|
// Now get the visibility information
|
|
size_t nvisible = 0;
|
|
is >> nvisible;
|
|
|
|
for (size_t k = 0; k < nvisible; k++) {
|
|
size_t cam_idx = 0, point_idx = 0;
|
|
float u, v;
|
|
is >> cam_idx >> point_idx >> u >> v;
|
|
track.measurements.push_back(make_pair(cam_idx, Point2(u, -v)));
|
|
}
|
|
|
|
data.tracks.push_back(track);
|
|
}
|
|
|
|
is.close();
|
|
return true;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
bool readBAL(const string& filename, SfM_data &data) {
|
|
// Load the data file
|
|
ifstream is(filename.c_str(), ifstream::in);
|
|
if (!is) {
|
|
cout << "Error in readBAL: can not find the file!!" << endl;
|
|
return false;
|
|
}
|
|
|
|
// Get the number of camera poses and 3D points
|
|
size_t nrPoses, nrPoints, nrObservations;
|
|
is >> nrPoses >> nrPoints >> nrObservations;
|
|
|
|
data.tracks.resize(nrPoints);
|
|
|
|
// Get the information for the observations
|
|
for (size_t k = 0; k < nrObservations; k++) {
|
|
size_t i = 0, j = 0;
|
|
float u, v;
|
|
is >> i >> j >> u >> v;
|
|
data.tracks[j].measurements.push_back(make_pair(i, Point2(u, -v)));
|
|
}
|
|
|
|
// Get the information for the camera poses
|
|
for (size_t i = 0; i < nrPoses; i++) {
|
|
// Get the rodriguez vector
|
|
float wx, wy, wz;
|
|
is >> wx >> wy >> wz;
|
|
Rot3 R = Rot3::rodriguez(wx, wy, wz); // BAL-OpenGL rotation matrix
|
|
|
|
// Get the translation vector
|
|
float tx, ty, tz;
|
|
is >> tx >> ty >> tz;
|
|
|
|
Pose3 pose = openGL2gtsam(R, tx, ty, tz);
|
|
|
|
// Get the focal length and the radial distortion parameters
|
|
float f, k1, k2;
|
|
is >> f >> k1 >> k2;
|
|
Cal3Bundler K(f, k1, k2);
|
|
|
|
data.cameras.push_back(SfM_Camera(pose, K));
|
|
}
|
|
|
|
// Get the information for the 3D points
|
|
for (size_t j = 0; j < nrPoints; j++) {
|
|
// Get the 3D position
|
|
float x, y, z;
|
|
is >> x >> y >> z;
|
|
SfM_Track& track = data.tracks[j];
|
|
track.p = Point3(x, y, z);
|
|
track.r = 0.4f;
|
|
track.g = 0.4f;
|
|
track.b = 0.4f;
|
|
}
|
|
|
|
is.close();
|
|
return true;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
bool writeBAL(const string& filename, SfM_data &data) {
|
|
// Open the output file
|
|
ofstream os;
|
|
os.open(filename.c_str());
|
|
os.precision(20);
|
|
if (!os.is_open()) {
|
|
cout << "Error in writeBAL: can not open the file!!" << endl;
|
|
return false;
|
|
}
|
|
|
|
// Write the number of camera poses and 3D points
|
|
size_t nrObservations = 0;
|
|
for (size_t j = 0; j < data.number_tracks(); j++) {
|
|
nrObservations += data.tracks[j].number_measurements();
|
|
}
|
|
|
|
// Write observations
|
|
os << data.number_cameras() << " " << data.number_tracks() << " "
|
|
<< nrObservations << endl;
|
|
os << endl;
|
|
|
|
for (size_t j = 0; j < data.number_tracks(); j++) { // for each 3D point j
|
|
SfM_Track track = data.tracks[j];
|
|
|
|
for (size_t k = 0; k < track.number_measurements(); k++) { // for each observation of the 3D point j
|
|
size_t i = track.measurements[k].first; // camera id
|
|
double u0 = data.cameras[i].calibration().u0();
|
|
double v0 = data.cameras[i].calibration().v0();
|
|
|
|
if (u0 != 0 || v0 != 0) {
|
|
cout
|
|
<< "writeBAL has not been tested for calibration with nonzero (u0,v0)"
|
|
<< endl;
|
|
}
|
|
|
|
double pixelBALx = track.measurements[k].second.x() - u0; // center of image is the origin
|
|
double pixelBALy = -(track.measurements[k].second.y() - v0); // center of image is the origin
|
|
Point2 pixelMeasurement(pixelBALx, pixelBALy);
|
|
os << i /*camera id*/<< " " << j /*point id*/<< " "
|
|
<< pixelMeasurement.x() /*u of the pixel*/<< " "
|
|
<< pixelMeasurement.y() /*v of the pixel*/<< endl;
|
|
}
|
|
}
|
|
os << endl;
|
|
|
|
// Write cameras
|
|
for (size_t i = 0; i < data.number_cameras(); i++) { // for each camera
|
|
Pose3 poseGTSAM = data.cameras[i].pose();
|
|
Cal3Bundler cameraCalibration = data.cameras[i].calibration();
|
|
Pose3 poseOpenGL = gtsam2openGL(poseGTSAM);
|
|
os << Rot3::Logmap(poseOpenGL.rotation()) << endl;
|
|
os << poseOpenGL.translation().vector() << endl;
|
|
os << cameraCalibration.fx() << endl;
|
|
os << cameraCalibration.k1() << endl;
|
|
os << cameraCalibration.k2() << endl;
|
|
os << endl;
|
|
}
|
|
|
|
// Write the points
|
|
for (size_t j = 0; j < data.number_tracks(); j++) { // for each 3D point j
|
|
Point3 point = data.tracks[j].p;
|
|
os << point.x() << endl;
|
|
os << point.y() << endl;
|
|
os << point.z() << endl;
|
|
os << endl;
|
|
}
|
|
|
|
os.close();
|
|
return true;
|
|
}
|
|
|
|
bool writeBALfromValues(const string& filename, const SfM_data &data,
|
|
Values& values) {
|
|
|
|
SfM_data dataValues = data;
|
|
|
|
// Store poses or cameras in SfM_data
|
|
Values valuesPoses = values.filter<Pose3>();
|
|
if (valuesPoses.size() == dataValues.number_cameras()) { // we only estimated camera poses
|
|
for (size_t i = 0; i < dataValues.number_cameras(); i++) { // for each camera
|
|
Key poseKey = symbol('x', i);
|
|
Pose3 pose = values.at<Pose3>(poseKey);
|
|
Cal3Bundler K = dataValues.cameras[i].calibration();
|
|
PinholeCamera<Cal3Bundler> camera(pose, K);
|
|
dataValues.cameras[i] = camera;
|
|
}
|
|
} else {
|
|
Values valuesCameras = values.filter<PinholeCamera<Cal3Bundler> >();
|
|
if (valuesCameras.size() == dataValues.number_cameras()) { // we only estimated camera poses and calibration
|
|
for (size_t i = 0; i < dataValues.number_cameras(); i++) { // for each camera
|
|
Key cameraKey = i; // symbol('c',i);
|
|
PinholeCamera<Cal3Bundler> camera =
|
|
values.at<PinholeCamera<Cal3Bundler> >(cameraKey);
|
|
dataValues.cameras[i] = camera;
|
|
}
|
|
} else {
|
|
cout
|
|
<< "writeBALfromValues: different number of cameras in SfM_dataValues (#cameras= "
|
|
<< dataValues.number_cameras() << ") and values (#cameras "
|
|
<< valuesPoses.size() << ", #poses " << valuesCameras.size() << ")!!"
|
|
<< endl;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Store 3D points in SfM_data
|
|
Values valuesPoints = values.filter<Point3>();
|
|
if (valuesPoints.size() != dataValues.number_tracks()) {
|
|
cout
|
|
<< "writeBALfromValues: different number of points in SfM_dataValues (#points= "
|
|
<< dataValues.number_tracks() << ") and values (#points "
|
|
<< valuesPoints.size() << ")!!" << endl;
|
|
}
|
|
|
|
for (size_t j = 0; j < dataValues.number_tracks(); j++) { // for each point
|
|
Key pointKey = P(j);
|
|
if (values.exists(pointKey)) {
|
|
Point3 point = values.at<Point3>(pointKey);
|
|
dataValues.tracks[j].p = point;
|
|
} else {
|
|
dataValues.tracks[j].r = 1.0;
|
|
dataValues.tracks[j].g = 0.0;
|
|
dataValues.tracks[j].b = 0.0;
|
|
dataValues.tracks[j].p = Point3();
|
|
}
|
|
}
|
|
|
|
// Write SfM_data to file
|
|
return writeBAL(filename, dataValues);
|
|
}
|
|
|
|
Values initialCamerasEstimate(const SfM_data& db) {
|
|
Values initial;
|
|
size_t i = 0; // NO POINTS: j = 0;
|
|
BOOST_FOREACH(const SfM_Camera& camera, db.cameras)
|
|
initial.insert(i++, camera);
|
|
return initial;
|
|
}
|
|
|
|
Values initialCamerasAndPointsEstimate(const SfM_data& db) {
|
|
Values initial;
|
|
size_t i = 0, j = 0;
|
|
BOOST_FOREACH(const SfM_Camera& camera, db.cameras)
|
|
initial.insert((i++), camera);
|
|
BOOST_FOREACH(const SfM_Track& track, db.tracks)
|
|
initial.insert(P(j++), track.p);
|
|
return initial;
|
|
}
|
|
|
|
} // \namespace gtsam
|