gtsam/gtsam/nonlinear/NonlinearFactor.h

906 lines
29 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file NoiseModelFactor.h
* @brief Non-linear factor class
* @author Frank Dellaert
* @author Richard Roberts
*/
// \callgraph
#pragma once
#include <list>
#include <limits>
#include <boost/serialization/base_object.hpp>
#include <boost/tuple/tuple.hpp>
#include <gtsam/inference/Factor-inl.h>
#include <gtsam/inference/IndexFactor.h>
#include <gtsam/linear/SharedNoiseModel.h>
#include <gtsam/linear/JacobianFactor.h>
#include <gtsam/nonlinear/Ordering.h>
namespace gtsam {
using boost::make_tuple;
// Helper function to fill a vector from a tuple function of any length
template<typename CONS>
inline void __fill_from_tuple(std::vector<Symbol>& vector, size_t position, const CONS& tuple) {
vector[position] = tuple.get_head();
__fill_from_tuple<typename CONS::tail_type>(vector, position+1, tuple.get_tail());
}
template<>
inline void __fill_from_tuple<boost::tuples::null_type>(std::vector<Symbol>& vector, size_t position, const boost::tuples::null_type& tuple) {
// Do nothing
}
/* ************************************************************************* */
/**
* Nonlinear factor base class
*
* Templated on a values structure type. The values structures are typically
* more general than just vectors, e.g., Rot3 or Pose3,
* which are objects in non-linear manifolds (Lie groups).
* \nosubgrouping
*/
template<class VALUES>
class NonlinearFactor: public Factor<Symbol> {
protected:
// Some handy typedefs
typedef Factor<Symbol> Base;
typedef NonlinearFactor<VALUES> This;
public:
typedef boost::shared_ptr<NonlinearFactor<VALUES> > shared_ptr;
/// @name Standard Constructors
/// @{
/** Default constructor for I/O only */
NonlinearFactor() {
}
/**
* Constructor
* @param keys A boost::tuple containing the variables involved in this factor,
* example: <tt>NonlinearFactor(make_tuple(symbol1, symbol2, symbol3))</tt>
*/
template<class U1, class U2>
NonlinearFactor(const boost::tuples::cons<U1,U2>& keys) {
this->keys_.resize(boost::tuples::length<boost::tuples::cons<U1,U2> >::value);
// Use helper function to fill key vector, using 'cons' representation of tuple
__fill_from_tuple(this->keys(), 0, keys);
}
/**
* Constructor
* @param keys The variables involved in this factor
*/
template<class ITERATOR>
NonlinearFactor(ITERATOR beginKeys, ITERATOR endKeys) {
this->keys_.insert(this->keys_.end(), beginKeys, endKeys);
}
/// @}
/// @name Testable
/// @{
/** print */
virtual void print(const std::string& s = "") const {
std::cout << s << ": NonlinearFactor\n";
}
/// @}
/// @name Standard Interface
/// @{
/** Destructor */
virtual ~NonlinearFactor() {}
/**
* Calculate the error of the factor
* This is typically equal to log-likelihood, e.g. 0.5(h(x)-z)^2/sigma^2 in case of Gaussian.
* You can override this for systems with unusual noise models.
*/
virtual double error(const VALUES& c) const = 0;
/** get the dimension of the factor (number of rows on linearization) */
virtual size_t dim() const = 0;
/**
* Checks whether a factor should be used based on a set of values.
* This is primarily used to implment inequality constraints that
* require a variable active set. For all others, the default implementation
* returning true solves this problem.
*
* In an inequality/bounding constraint, this active() returns true
* when the constraint is *NOT* fulfilled.
* @return true if the constraint is active
*/
virtual bool active(const VALUES& c) const { return true; }
/** linearize to a GaussianFactor */
virtual boost::shared_ptr<GaussianFactor>
linearize(const VALUES& c, const Ordering& ordering) const = 0;
/**
* Create a symbolic factor using the given ordering to determine the
* variable indices.
*/
virtual IndexFactor::shared_ptr symbolic(const Ordering& ordering) const {
std::vector<Index> indices(this->size());
for(size_t j=0; j<this->size(); ++j)
indices[j] = ordering[this->keys()[j]];
return IndexFactor::shared_ptr(new IndexFactor(indices));
}
}; // \class NonlinearFactor
/* ************************************************************************* */
/**
* A nonlinear sum-of-squares factor with a zero-mean noise model
* implementing the density \f$ P(z|x) \propto exp -0.5*|z-h(x)|^2_C \f$
* Templated on the parameter type X and the values structure Values
* There is no return type specified for h(x). Instead, we require
* the derived class implements \f$ \mathtt{error\_vector}(x) = h(x)-z \approx A \delta x - b \f$
* This allows a graph to have factors with measurements of mixed type.
* The noise model is typically Gaussian, but robust and constrained error models are also supported.
*/
template<class VALUES>
class NoiseModelFactor: public NonlinearFactor<VALUES> {
protected:
// handy typedefs
typedef NonlinearFactor<VALUES> Base;
typedef NoiseModelFactor<VALUES> This;
SharedNoiseModel noiseModel_; /** Noise model */
public:
typedef boost::shared_ptr<NoiseModelFactor<VALUES> > shared_ptr;
/** Default constructor for I/O only */
NoiseModelFactor() {
}
/** Destructor */
virtual ~NoiseModelFactor() {}
/**
* Constructor
* @param keys A boost::tuple containing the variables involved in this factor,
* example: <tt>NoiseModelFactor(noiseModel, make_tuple(symbol1, symbol2, symbol3)</tt>
*/
template<class U1, class U2>
NoiseModelFactor(const SharedNoiseModel& noiseModel, const boost::tuples::cons<U1,U2>& keys)
: Base(keys), noiseModel_(noiseModel) {
}
/**
* Constructor
* @param keys The variables involved in this factor
*/
template<class ITERATOR>
NoiseModelFactor(const SharedNoiseModel& noiseModel, ITERATOR beginKeys, ITERATOR endKeys)
: Base(beginKeys, endKeys), noiseModel_(noiseModel) {
}
protected:
/**
* Constructor - only for subclasses, as this does not set keys.
*/
NoiseModelFactor(const SharedNoiseModel& noiseModel) : noiseModel_(noiseModel) {}
public:
/** Print */
virtual void print(const std::string& s = "") const {
std::cout << s << ": NoiseModelFactor\n";
std::cout << " ";
BOOST_FOREACH(const Symbol& key, this->keys()) { std::cout << (std::string)key << " "; }
std::cout << "\n";
this->noiseModel_->print(" noise model: ");
}
/** Check if two factors are equal */
virtual bool equals(const NoiseModelFactor<VALUES>& f, double tol = 1e-9) const {
return noiseModel_->equals(*f.noiseModel_, tol) && Base::equals(f, tol);
}
/** get the dimension of the factor (number of rows on linearization) */
virtual size_t dim() const {
return noiseModel_->dim();
}
/** access to the noise model */
SharedNoiseModel get_noiseModel() const {
return noiseModel_;
}
/**
* Error function *without* the NoiseModel, \f$ z-h(x) \f$.
* Override this method to finish implementing an N-way factor.
* If any of the optional Matrix reference arguments are specified, it should compute
* both the function evaluation and its derivative(s) in X1 (and/or X2, X3...).
*/
virtual Vector unwhitenedError(const VALUES& x, boost::optional<std::vector<Matrix>&> H = boost::none) const = 0;
/**
* Vector of errors, whitened
* This is the raw error, i.e., i.e. \f$ (h(x)-z)/\sigma \f$ in case of a Gaussian
*/
Vector whitenedError(const VALUES& c) const {
return noiseModel_->whiten(unwhitenedError(c));
}
/**
* Calculate the error of the factor.
* This is the log-likelihood, e.g. \f$ 0.5(h(x)-z)^2/\sigma^2 \f$ in case of Gaussian.
* In this class, we take the raw prediction error \f$ h(x)-z \f$, ask the noise model
* to transform it to \f$ (h(x)-z)^2/\sigma^2 \f$, and then multiply by 0.5.
*/
virtual double error(const VALUES& c) const {
if (this->active(c))
return 0.5 * noiseModel_->distance(unwhitenedError(c));
else
return 0.0;
}
/**
* Linearize a non-linearFactorN to get a GaussianFactor,
* \f$ Ax-b \approx h(x+\delta x)-z = h(x) + A \delta x - z \f$
* Hence \f$ b = z - h(x) = - \mathtt{error\_vector}(x) \f$
*/
boost::shared_ptr<GaussianFactor> linearize(const VALUES& x, const Ordering& ordering) const {
// Only linearize if the factor is active
if (!this->active(x))
return boost::shared_ptr<JacobianFactor>();
// Create the set of terms - Jacobians for each index
Vector b;
// Call evaluate error to get Jacobians and b vector
std::vector<Matrix> A(this->size());
b = -unwhitenedError(x, A);
this->noiseModel_->WhitenSystem(A,b);
std::vector<std::pair<Index, Matrix> > terms(this->size());
// Fill in terms
for(size_t j=0; j<this->size(); ++j) {
terms[j].first = ordering[this->keys()[j]];
terms[j].second.swap(A[j]);
}
// TODO pass unwhitened + noise model to Gaussian factor
noiseModel::Constrained::shared_ptr constrained =
boost::shared_dynamic_cast<noiseModel::Constrained>(this->noiseModel_);
if(constrained)
return GaussianFactor::shared_ptr(
new JacobianFactor(terms, b, constrained->unit()));
else
return GaussianFactor::shared_ptr(
new JacobianFactor(terms, b, noiseModel::Unit::Create(b.size())));
}
private:
/** Serialization function */
friend class boost::serialization::access;
template<class ARCHIVE>
void serialize(ARCHIVE & ar, const unsigned int version) {
ar & boost::serialization::make_nvp("NonlinearFactor",
boost::serialization::base_object<Base>(*this));
ar & BOOST_SERIALIZATION_NVP(noiseModel_);
}
}; // \class NoiseModelFactor
/* ************************************************************************* */
/** A convenient base class for creating your own NoiseModelFactor with 1
* variable. To derive from this class, implement evaluateError(). */
template<class VALUES, class KEY>
class NonlinearFactor1: public NoiseModelFactor<VALUES> {
public:
// typedefs for value types pulled from keys
typedef typename KEY::Value X;
protected:
// The value of the key. Not const to allow serialization
KEY key_;
typedef NoiseModelFactor<VALUES> Base;
typedef NonlinearFactor1<VALUES, KEY> This;
public:
/** Default constructor for I/O only */
NonlinearFactor1() {}
virtual ~NonlinearFactor1() {}
inline const KEY& key() const { return key_; }
/**
* Constructor
* @param z measurement
* @param key by which to look up X value in Values
*/
NonlinearFactor1(const SharedNoiseModel& noiseModel, const KEY& key1) :
Base(noiseModel, make_tuple(key1)), key_(key1) {
}
/** Calls the 1-key specific version of evaluateError, which is pure virtual
* so must be implemented in the derived class. */
virtual Vector unwhitenedError(const VALUES& x, boost::optional<std::vector<Matrix>&> H = boost::none) const {
if(this->active(x)) {
const X& x1 = x[key_];
if(H) {
return evaluateError(x1, (*H)[0]);
} else {
return evaluateError(x1);
}
} else {
return zero(this->dim());
}
}
/** Print */
virtual void print(const std::string& s = "") const {
std::cout << s << ": NonlinearFactor1(" << (std::string) this->key_ << ")\n";
this->noiseModel_->print(" noise model: ");
}
/**
* Override this method to finish implementing a unary factor.
* If the optional Matrix reference argument is specified, it should compute
* both the function evaluation and its derivative in X.
*/
virtual Vector evaluateError(const X& x, boost::optional<Matrix&> H =
boost::none) const = 0;
private:
/** Serialization function */
friend class boost::serialization::access;
template<class ARCHIVE>
void serialize(ARCHIVE & ar, const unsigned int version) {
ar & boost::serialization::make_nvp("NoiseModelFactor",
boost::serialization::base_object<Base>(*this));
ar & BOOST_SERIALIZATION_NVP(key_);
}
};// \class NonlinearFactor1
/* ************************************************************************* */
/** A convenient base class for creating your own NoiseModelFactor with 2
* variables. To derive from this class, implement evaluateError(). */
template<class VALUES, class KEY1, class KEY2>
class NonlinearFactor2: public NoiseModelFactor<VALUES> {
public:
// typedefs for value types pulled from keys
typedef typename KEY1::Value X1;
typedef typename KEY2::Value X2;
protected:
// The values of the keys. Not const to allow serialization
KEY1 key1_;
KEY2 key2_;
typedef NoiseModelFactor<VALUES> Base;
typedef NonlinearFactor2<VALUES, KEY1, KEY2> This;
public:
/**
* Default Constructor for I/O
*/
NonlinearFactor2() {}
/**
* Constructor
* @param j1 key of the first variable
* @param j2 key of the second variable
*/
NonlinearFactor2(const SharedNoiseModel& noiseModel, const KEY1& j1, const KEY2& j2) :
Base(noiseModel, make_tuple(j1,j2)), key1_(j1), key2_(j2) {}
virtual ~NonlinearFactor2() {}
/** methods to retrieve both keys */
inline const KEY1& key1() const { return key1_; }
inline const KEY2& key2() const { return key2_; }
/** Calls the 2-key specific version of evaluateError, which is pure virtual
* so must be implemented in the derived class. */
virtual Vector unwhitenedError(const VALUES& x, boost::optional<std::vector<Matrix>&> H = boost::none) const {
if(this->active(x)) {
const X1& x1 = x[key1_];
const X2& x2 = x[key2_];
if(H) {
return evaluateError(x1, x2, (*H)[0], (*H)[1]);
} else {
return evaluateError(x1, x2);
}
} else {
return zero(this->dim());
}
}
/** Print */
virtual void print(const std::string& s = "") const {
std::cout << s << ": NonlinearFactor2("
<< (std::string) this->key1_ << ","
<< (std::string) this->key2_ << ")\n";
this->noiseModel_->print(" noise model: ");
}
/**
* Override this method to finish implementing a binary factor.
* If any of the optional Matrix reference arguments are specified, it should compute
* both the function evaluation and its derivative(s) in X1 (and/or X2).
*/
virtual Vector
evaluateError(const X1&, const X2&, boost::optional<Matrix&> H1 =
boost::none, boost::optional<Matrix&> H2 = boost::none) const = 0;
private:
/** Serialization function */
friend class boost::serialization::access;
template<class ARCHIVE>
void serialize(ARCHIVE & ar, const unsigned int version) {
ar & boost::serialization::make_nvp("NoiseModelFactor",
boost::serialization::base_object<Base>(*this));
ar & BOOST_SERIALIZATION_NVP(key1_);
ar & BOOST_SERIALIZATION_NVP(key2_);
}
}; // \class NonlinearFactor2
/* ************************************************************************* */
/** A convenient base class for creating your own NoiseModelFactor with 3
* variables. To derive from this class, implement evaluateError(). */
template<class VALUES, class KEY1, class KEY2, class KEY3>
class NonlinearFactor3: public NoiseModelFactor<VALUES> {
public:
// typedefs for value types pulled from keys
typedef typename KEY1::Value X1;
typedef typename KEY2::Value X2;
typedef typename KEY3::Value X3;
protected:
// The values of the keys. Not const to allow serialization
KEY1 key1_;
KEY2 key2_;
KEY3 key3_;
typedef NoiseModelFactor<VALUES> Base;
typedef NonlinearFactor3<VALUES, KEY1, KEY2, KEY3> This;
public:
/**
* Default Constructor for I/O
*/
NonlinearFactor3() {}
/**
* Constructor
* @param j1 key of the first variable
* @param j2 key of the second variable
* @param j3 key of the third variable
*/
NonlinearFactor3(const SharedNoiseModel& noiseModel, const KEY1& j1, const KEY2& j2, const KEY3& j3) :
Base(noiseModel, make_tuple(j1,j2,j3)), key1_(j1), key2_(j2), key3_(j3) {}
virtual ~NonlinearFactor3() {}
/** methods to retrieve keys */
inline const KEY1& key1() const { return key1_; }
inline const KEY2& key2() const { return key2_; }
inline const KEY3& key3() const { return key3_; }
/** Calls the 3-key specific version of evaluateError, which is pure virtual
* so must be implemented in the derived class. */
virtual Vector unwhitenedError(const VALUES& x, boost::optional<std::vector<Matrix>&> H = boost::none) const {
if(this->active(x)) {
if(H)
return evaluateError(x[key1_], x[key2_], x[key3_], (*H)[0], (*H)[1], (*H)[2]);
else
return evaluateError(x[key1_], x[key2_], x[key3_]);
} else {
return zero(this->dim());
}
}
/** Print */
virtual void print(const std::string& s = "") const {
std::cout << s << ": NonlinearFactor3("
<< (std::string) this->key1_ << ","
<< (std::string) this->key2_ << ","
<< (std::string) this->key3_ << ")\n";
this->noiseModel_->print(" noise model: ");
}
/**
* Override this method to finish implementing a trinary factor.
* If any of the optional Matrix reference arguments are specified, it should compute
* both the function evaluation and its derivative(s) in X1 (and/or X2, X3).
*/
virtual Vector
evaluateError(const X1&, const X2&, const X3&,
boost::optional<Matrix&> H1 = boost::none,
boost::optional<Matrix&> H2 = boost::none,
boost::optional<Matrix&> H3 = boost::none) const = 0;
private:
/** Serialization function */
friend class boost::serialization::access;
template<class ARCHIVE>
void serialize(ARCHIVE & ar, const unsigned int version) {
ar & boost::serialization::make_nvp("NoiseModelFactor",
boost::serialization::base_object<Base>(*this));
ar & BOOST_SERIALIZATION_NVP(key1_);
ar & BOOST_SERIALIZATION_NVP(key2_);
ar & BOOST_SERIALIZATION_NVP(key3_);
}
}; // \class NonlinearFactor3
/* ************************************************************************* */
/** A convenient base class for creating your own NoiseModelFactor with 4
* variables. To derive from this class, implement evaluateError(). */
template<class VALUES, class KEY1, class KEY2, class KEY3, class KEY4>
class NonlinearFactor4: public NoiseModelFactor<VALUES> {
public:
// typedefs for value types pulled from keys
typedef typename KEY1::Value X1;
typedef typename KEY2::Value X2;
typedef typename KEY3::Value X3;
typedef typename KEY4::Value X4;
protected:
// The values of the keys. Not const to allow serialization
KEY1 key1_;
KEY2 key2_;
KEY3 key3_;
KEY4 key4_;
typedef NoiseModelFactor<VALUES> Base;
typedef NonlinearFactor4<VALUES, KEY1, KEY2, KEY3, KEY4> This;
public:
/**
* Default Constructor for I/O
*/
NonlinearFactor4() {}
/**
* Constructor
* @param j1 key of the first variable
* @param j2 key of the second variable
* @param j3 key of the third variable
* @param j4 key of the fourth variable
*/
NonlinearFactor4(const SharedNoiseModel& noiseModel, const KEY1& j1, const KEY2& j2, const KEY3& j3, const KEY4& j4) :
Base(noiseModel, make_tuple(j1,j2,j3,j4)), key1_(j1), key2_(j2), key3_(j3), key4_(j4) {}
virtual ~NonlinearFactor4() {}
/** methods to retrieve keys */
inline const KEY1& key1() const { return key1_; }
inline const KEY2& key2() const { return key2_; }
inline const KEY3& key3() const { return key3_; }
inline const KEY4& key4() const { return key4_; }
/** Calls the 4-key specific version of evaluateError, which is pure virtual
* so must be implemented in the derived class. */
virtual Vector unwhitenedError(const VALUES& x, boost::optional<std::vector<Matrix>&> H = boost::none) const {
if(this->active(x)) {
if(H)
return evaluateError(x[key1_], x[key2_], x[key3_], x[key4_], (*H)[0], (*H)[1], (*H)[2], (*H)[3]);
else
return evaluateError(x[key1_], x[key2_], x[key3_], x[key4_]);
} else {
return zero(this->dim());
}
}
/** Print */
virtual void print(const std::string& s = "") const {
std::cout << s << ": NonlinearFactor4("
<< (std::string) this->key1_ << ","
<< (std::string) this->key2_ << ","
<< (std::string) this->key3_ << ","
<< (std::string) this->key4_ << ")\n";
this->noiseModel_->print(" noise model: ");
}
/**
* Override this method to finish implementing a 4-way factor.
* If any of the optional Matrix reference arguments are specified, it should compute
* both the function evaluation and its derivative(s) in X1 (and/or X2, X3).
*/
virtual Vector
evaluateError(const X1&, const X2&, const X3&, const X4&,
boost::optional<Matrix&> H1 = boost::none,
boost::optional<Matrix&> H2 = boost::none,
boost::optional<Matrix&> H3 = boost::none,
boost::optional<Matrix&> H4 = boost::none) const = 0;
private:
/** Serialization function */
friend class boost::serialization::access;
template<class ARCHIVE>
void serialize(ARCHIVE & ar, const unsigned int version) {
ar & boost::serialization::make_nvp("NoiseModelFactor",
boost::serialization::base_object<Base>(*this));
ar & BOOST_SERIALIZATION_NVP(key1_);
ar & BOOST_SERIALIZATION_NVP(key2_);
ar & BOOST_SERIALIZATION_NVP(key3_);
ar & BOOST_SERIALIZATION_NVP(key4_);
}
}; // \class NonlinearFactor4
/* ************************************************************************* */
/** A convenient base class for creating your own NoiseModelFactor with 5
* variables. To derive from this class, implement evaluateError(). */
template<class VALUES, class KEY1, class KEY2, class KEY3, class KEY4, class KEY5>
class NonlinearFactor5: public NoiseModelFactor<VALUES> {
public:
// typedefs for value types pulled from keys
typedef typename KEY1::Value X1;
typedef typename KEY2::Value X2;
typedef typename KEY3::Value X3;
typedef typename KEY4::Value X4;
typedef typename KEY5::Value X5;
protected:
// The values of the keys. Not const to allow serialization
KEY1 key1_;
KEY2 key2_;
KEY3 key3_;
KEY4 key4_;
KEY5 key5_;
typedef NoiseModelFactor<VALUES> Base;
typedef NonlinearFactor5<VALUES, KEY1, KEY2, KEY3, KEY4, KEY5> This;
public:
/**
* Default Constructor for I/O
*/
NonlinearFactor5() {}
/**
* Constructor
* @param j1 key of the first variable
* @param j2 key of the second variable
* @param j3 key of the third variable
* @param j4 key of the fourth variable
* @param j5 key of the fifth variable
*/
NonlinearFactor5(const SharedNoiseModel& noiseModel, const KEY1& j1, const KEY2& j2, const KEY3& j3, const KEY4& j4, const KEY5& j5) :
Base(noiseModel, make_tuple(j1,j2,j3,j4,j5)), key1_(j1), key2_(j2), key3_(j3), key4_(j4), key5_(j5) {}
virtual ~NonlinearFactor5() {}
/** methods to retrieve keys */
inline const KEY1& key1() const { return key1_; }
inline const KEY2& key2() const { return key2_; }
inline const KEY3& key3() const { return key3_; }
inline const KEY4& key4() const { return key4_; }
inline const KEY5& key5() const { return key5_; }
/** Calls the 5-key specific version of evaluateError, which is pure virtual
* so must be implemented in the derived class. */
virtual Vector unwhitenedError(const VALUES& x, boost::optional<std::vector<Matrix>&> H = boost::none) const {
if(this->active(x)) {
if(H)
return evaluateError(x[key1_], x[key2_], x[key3_], x[key4_], x[key5_], (*H)[0], (*H)[1], (*H)[2], (*H)[3], (*H)[4]);
else
return evaluateError(x[key1_], x[key2_], x[key3_], x[key4_], x[key5_]);
} else {
return zero(this->dim());
}
}
/** Print */
virtual void print(const std::string& s = "") const {
std::cout << s << ": NonlinearFactor5("
<< (std::string) this->key1_ << ","
<< (std::string) this->key2_ << ","
<< (std::string) this->key3_ << ","
<< (std::string) this->key4_ << ","
<< (std::string) this->key5_ << ")\n";
this->noiseModel_->print(" noise model: ");
}
/**
* Override this method to finish implementing a 5-way factor.
* If any of the optional Matrix reference arguments are specified, it should compute
* both the function evaluation and its derivative(s) in X1 (and/or X2, X3).
*/
virtual Vector
evaluateError(const X1&, const X2&, const X3&, const X4&, const X5&,
boost::optional<Matrix&> H1 = boost::none,
boost::optional<Matrix&> H2 = boost::none,
boost::optional<Matrix&> H3 = boost::none,
boost::optional<Matrix&> H4 = boost::none,
boost::optional<Matrix&> H5 = boost::none) const = 0;
private:
/** Serialization function */
friend class boost::serialization::access;
template<class ARCHIVE>
void serialize(ARCHIVE & ar, const unsigned int version) {
ar & boost::serialization::make_nvp("NoiseModelFactor",
boost::serialization::base_object<Base>(*this));
ar & BOOST_SERIALIZATION_NVP(key1_);
ar & BOOST_SERIALIZATION_NVP(key2_);
ar & BOOST_SERIALIZATION_NVP(key3_);
ar & BOOST_SERIALIZATION_NVP(key4_);
ar & BOOST_SERIALIZATION_NVP(key5_);
}
}; // \class NonlinearFactor5
/* ************************************************************************* */
/** A convenient base class for creating your own NoiseModelFactor with 6
* variables. To derive from this class, implement evaluateError(). */
template<class VALUES, class KEY1, class KEY2, class KEY3, class KEY4, class KEY5, class KEY6>
class NonlinearFactor6: public NoiseModelFactor<VALUES> {
public:
// typedefs for value types pulled from keys
typedef typename KEY1::Value X1;
typedef typename KEY2::Value X2;
typedef typename KEY3::Value X3;
typedef typename KEY4::Value X4;
typedef typename KEY5::Value X5;
typedef typename KEY6::Value X6;
protected:
// The values of the keys. Not const to allow serialization
KEY1 key1_;
KEY2 key2_;
KEY3 key3_;
KEY4 key4_;
KEY5 key5_;
KEY6 key6_;
typedef NoiseModelFactor<VALUES> Base;
typedef NonlinearFactor6<VALUES, KEY1, KEY2, KEY3, KEY4, KEY5, KEY6> This;
public:
/**
* Default Constructor for I/O
*/
NonlinearFactor6() {}
/**
* Constructor
* @param j1 key of the first variable
* @param j2 key of the second variable
* @param j3 key of the third variable
* @param j4 key of the fourth variable
* @param j5 key of the fifth variable
* @param j6 key of the fifth variable
*/
NonlinearFactor6(const SharedNoiseModel& noiseModel, const KEY1& j1, const KEY2& j2, const KEY3& j3, const KEY4& j4, const KEY5& j5, const KEY6& j6) :
Base(noiseModel, make_tuple(j1,j2,j3,j4,j5,j6)), key1_(j1), key2_(j2), key3_(j3), key4_(j4), key5_(j5), key6_(j6) {}
virtual ~NonlinearFactor6() {}
/** methods to retrieve keys */
inline const KEY1& key1() const { return key1_; }
inline const KEY2& key2() const { return key2_; }
inline const KEY3& key3() const { return key3_; }
inline const KEY4& key4() const { return key4_; }
inline const KEY5& key5() const { return key5_; }
inline const KEY6& key6() const { return key6_; }
/** Calls the 6-key specific version of evaluateError, which is pure virtual
* so must be implemented in the derived class. */
virtual Vector unwhitenedError(const VALUES& x, boost::optional<std::vector<Matrix>&> H = boost::none) const {
if(this->active(x)) {
if(H)
return evaluateError(x[key1_], x[key2_], x[key3_], x[key4_], x[key5_], x[key6_], (*H)[0], (*H)[1], (*H)[2], (*H)[3], (*H)[4], (*H)[5]);
else
return evaluateError(x[key1_], x[key2_], x[key3_], x[key4_], x[key5_], x[key6_]);
} else {
return zero(this->dim());
}
}
/** Print */
virtual void print(const std::string& s = "") const {
std::cout << s << ": NonlinearFactor6("
<< (std::string) this->key1_ << ","
<< (std::string) this->key2_ << ","
<< (std::string) this->key3_ << ","
<< (std::string) this->key4_ << ","
<< (std::string) this->key5_ << ","
<< (std::string) this->key6_ << ")\n";
this->noiseModel_->print(" noise model: ");
}
/**
* Override this method to finish implementing a 6-way factor.
* If any of the optional Matrix reference arguments are specified, it should compute
* both the function evaluation and its derivative(s) in X1 (and/or X2, X3).
*/
virtual Vector
evaluateError(const X1&, const X2&, const X3&, const X4&, const X5&, const X6&,
boost::optional<Matrix&> H1 = boost::none,
boost::optional<Matrix&> H2 = boost::none,
boost::optional<Matrix&> H3 = boost::none,
boost::optional<Matrix&> H4 = boost::none,
boost::optional<Matrix&> H5 = boost::none,
boost::optional<Matrix&> H6 = boost::none) const = 0;
private:
/** Serialization function */
friend class boost::serialization::access;
template<class ARCHIVE>
void serialize(ARCHIVE & ar, const unsigned int version) {
ar & boost::serialization::make_nvp("NoiseModelFactor",
boost::serialization::base_object<Base>(*this));
ar & BOOST_SERIALIZATION_NVP(key1_);
ar & BOOST_SERIALIZATION_NVP(key2_);
ar & BOOST_SERIALIZATION_NVP(key3_);
ar & BOOST_SERIALIZATION_NVP(key4_);
ar & BOOST_SERIALIZATION_NVP(key5_);
ar & BOOST_SERIALIZATION_NVP(key6_);
}
}; // \class NonlinearFactor6
/* ************************************************************************* */
} // \namespace gtsam