64 lines
2.5 KiB
Python
64 lines
2.5 KiB
Python
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
import unittest
|
|
|
|
import gtsam
|
|
|
|
""" Returns example pose values of 3 points A, B and C in the world frame """
|
|
def ExampleValues():
|
|
T = []
|
|
T.append(gtsam.Point3(np.array([3.14, 1.59, 2.65])))
|
|
T.append(gtsam.Point3(np.array([-1.0590e+00, -3.6017e-02, -1.5720e+00])))
|
|
T.append(gtsam.Point3(np.array([8.5034e+00, 6.7499e+00, -3.6383e+00])))
|
|
|
|
data = gtsam.Values()
|
|
for i in range(len(T)):
|
|
data.insert(i, gtsam.Pose3(gtsam.Rot3(), T[i]))
|
|
return data
|
|
|
|
""" Returns binary measurements for the points in the given edges."""
|
|
def SimulateMeasurements(gt_poses, graph_edges):
|
|
measurements = gtsam.BinaryMeasurementsUnit3()
|
|
for edge in graph_edges:
|
|
Ta = gt_poses.atPose3(edge[0]).translation()
|
|
Tb = gt_poses.atPose3(edge[1]).translation()
|
|
measurements.append(gtsam.BinaryMeasurementUnit3( \
|
|
edge[0], edge[1], gtsam.Unit3(Tb - Ta), \
|
|
gtsam.noiseModel.Isotropic.Sigma(3, 0.01)))
|
|
return measurements
|
|
|
|
""" Tests for the translation recovery class """
|
|
class TestTranslationRecovery(unittest.TestCase):
|
|
"""Test selected Translation Recovery methods."""
|
|
|
|
def test_constructor(self):
|
|
"""Construct from binary measurements."""
|
|
algorithm = gtsam.TranslationRecovery(gtsam.BinaryMeasurementsUnit3())
|
|
self.assertIsInstance(algorithm, gtsam.TranslationRecovery)
|
|
|
|
def test_run(self):
|
|
gt_poses = ExampleValues()
|
|
measurements = SimulateMeasurements(gt_poses, [[0, 1], [0, 2], [1, 2]])
|
|
|
|
# Set verbosity to Silent for tests
|
|
lmParams = gtsam.LevenbergMarquardtParams()
|
|
lmParams.setVerbosityLM("silent")
|
|
|
|
algorithm = gtsam.TranslationRecovery(measurements, lmParams)
|
|
scale = 2.0
|
|
result = algorithm.run(scale)
|
|
|
|
w_aTc = gt_poses.atPose3(2).translation() - gt_poses.atPose3(0).translation()
|
|
w_aTb = gt_poses.atPose3(1).translation() - gt_poses.atPose3(0).translation()
|
|
w_aTc_expected = w_aTc*scale/np.linalg.norm(w_aTb)
|
|
w_aTb_expected = w_aTb*scale/np.linalg.norm(w_aTb)
|
|
|
|
np.testing.assert_array_almost_equal(result.atPoint3(0), np.array([0,0,0]), 6, "Origin result is incorrect.")
|
|
np.testing.assert_array_almost_equal(result.atPoint3(1), w_aTb_expected, 6, "Point B result is incorrect.")
|
|
np.testing.assert_array_almost_equal(result.atPoint3(2), w_aTc_expected, 6, "Point C result is incorrect.")
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|
|
|