gtsam/gtsam/geometry/SO3.h

194 lines
5.4 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file SO3.h
* @brief 3*3 matrix representation of SO(3)
* @author Frank Dellaert
* @author Luca Carlone
* @author Duy Nguyen Ta
* @date December 2014
*/
#pragma once
#include <gtsam/geometry/SOn.h>
#include <gtsam/base/Lie.h>
#include <gtsam/base/Matrix.h>
#include <gtsam/dllexport.h>
#include <cmath>
#include <vector>
namespace gtsam {
using SO3 = SO<3>;
// Below are all declarations of SO<3> specializations.
// They are *defined* in SO3.cpp.
template <>
GTSAM_EXPORT
SO3 SO3::AxisAngle(const Vector3& axis, double theta);
template <>
GTSAM_EXPORT
SO3 SO3::ClosestTo(const Matrix3& M);
template <>
GTSAM_EXPORT
SO3 SO3::ChordalMean(const std::vector<SO3>& rotations);
template <>
GTSAM_EXPORT
Matrix3 SO3::Hat(const Vector3& xi); ///< make skew symmetric matrix
template <>
GTSAM_EXPORT
Vector3 SO3::Vee(const Matrix3& X); ///< inverse of Hat
/// Adjoint map
template <>
Matrix3 SO3::AdjointMap() const;
/**
* Exponential map at identity - create a rotation from canonical coordinates
* \f$ [R_x,R_y,R_z] \f$ using Rodrigues' formula
*/
template <>
GTSAM_EXPORT
SO3 SO3::Expmap(const Vector3& omega, ChartJacobian H);
/// Derivative of Expmap
template <>
GTSAM_EXPORT
Matrix3 SO3::ExpmapDerivative(const Vector3& omega);
/**
* Log map at identity - returns the canonical coordinates
* \f$ [R_x,R_y,R_z] \f$ of this rotation
*/
template <>
GTSAM_EXPORT
Vector3 SO3::Logmap(const SO3& R, ChartJacobian H);
/// Derivative of Logmap
template <>
GTSAM_EXPORT
Matrix3 SO3::LogmapDerivative(const Vector3& omega);
// Chart at origin for SO3 is *not* Cayley but actual Expmap/Logmap
template <>
GTSAM_EXPORT
SO3 SO3::ChartAtOrigin::Retract(const Vector3& omega, ChartJacobian H);
template <>
GTSAM_EXPORT
Vector3 SO3::ChartAtOrigin::Local(const SO3& R, ChartJacobian H);
template <>
GTSAM_EXPORT
Vector9 SO3::vec(OptionalJacobian<9, 3> H) const;
/** Serialization function */
template <class Archive>
void serialize(Archive& ar, SO3& R, const unsigned int /*version*/) {
Matrix3& M = R.matrix_;
ar& boost::serialization::make_nvp("R11", M(0, 0));
ar& boost::serialization::make_nvp("R12", M(0, 1));
ar& boost::serialization::make_nvp("R13", M(0, 2));
ar& boost::serialization::make_nvp("R21", M(1, 0));
ar& boost::serialization::make_nvp("R22", M(1, 1));
ar& boost::serialization::make_nvp("R23", M(1, 2));
ar& boost::serialization::make_nvp("R31", M(2, 0));
ar& boost::serialization::make_nvp("R32", M(2, 1));
ar& boost::serialization::make_nvp("R33", M(2, 2));
}
namespace so3 {
/**
* Compose general matrix with an SO(3) element.
* We only provide the 9*9 derivative in the first argument M.
*/
GTSAM_EXPORT Matrix3 compose(const Matrix3& M, const SO3& R,
OptionalJacobian<9, 9> H = {});
/// (constant) Jacobian of compose wrpt M
GTSAM_EXPORT Matrix99 Dcompose(const SO3& R);
// Below are two functors that allow for saving computation when exponential map
// and its derivatives are needed at the same location in so<3>. The second
// functor also implements dedicated methods to apply dexp and/or inv(dexp).
/// Functor implementing Exponential map
class GTSAM_EXPORT ExpmapFunctor {
protected:
const double theta2;
Matrix3 W, K, KK;
bool nearZero;
double theta, sin_theta, one_minus_cos; // only defined if !nearZero
void init(bool nearZeroApprox = false);
public:
/// Constructor with element of Lie algebra so(3)
explicit ExpmapFunctor(const Vector3& omega, bool nearZeroApprox = false);
/// Constructor with axis-angle
ExpmapFunctor(const Vector3& axis, double angle, bool nearZeroApprox = false);
/// Rodrigues formula
SO3 expmap() const;
};
/// Functor that implements Exponential map *and* its derivatives
class DexpFunctor : public ExpmapFunctor {
const Vector3 omega;
double a, b;
Matrix3 dexp_;
public:
/// Constructor with element of Lie algebra so(3)
GTSAM_EXPORT explicit DexpFunctor(const Vector3& omega, bool nearZeroApprox = false);
// NOTE(luca): Right Jacobian for Exponential map in SO(3) - equation
// (10.86) and following equations in G.S. Chirikjian, "Stochastic Models,
// Information Theory, and Lie Groups", Volume 2, 2008.
// expmap(omega + v) \approx expmap(omega) * expmap(dexp * v)
// This maps a perturbation v in the tangent space to
// a perturbation on the manifold Expmap(dexp * v) */
const Matrix3& dexp() const { return dexp_; }
/// Multiplies with dexp(), with optional derivatives
GTSAM_EXPORT Vector3 applyDexp(const Vector3& v, OptionalJacobian<3, 3> H1 = {},
OptionalJacobian<3, 3> H2 = {}) const;
/// Multiplies with dexp().inverse(), with optional derivatives
GTSAM_EXPORT Vector3 applyInvDexp(const Vector3& v,
OptionalJacobian<3, 3> H1 = {},
OptionalJacobian<3, 3> H2 = {}) const;
};
} // namespace so3
/*
* Define the traits. internal::LieGroup provides both Lie group and Testable
*/
template <>
struct traits<SO3> : public internal::LieGroup<SO3> {};
template <>
struct traits<const SO3> : public internal::LieGroup<SO3> {};
} // end namespace gtsam