194 lines
5.4 KiB
C++
194 lines
5.4 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file SO3.h
|
|
* @brief 3*3 matrix representation of SO(3)
|
|
* @author Frank Dellaert
|
|
* @author Luca Carlone
|
|
* @author Duy Nguyen Ta
|
|
* @date December 2014
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <gtsam/geometry/SOn.h>
|
|
|
|
#include <gtsam/base/Lie.h>
|
|
#include <gtsam/base/Matrix.h>
|
|
#include <gtsam/dllexport.h>
|
|
|
|
#include <cmath>
|
|
#include <vector>
|
|
|
|
namespace gtsam {
|
|
|
|
using SO3 = SO<3>;
|
|
|
|
// Below are all declarations of SO<3> specializations.
|
|
// They are *defined* in SO3.cpp.
|
|
|
|
template <>
|
|
GTSAM_EXPORT
|
|
SO3 SO3::AxisAngle(const Vector3& axis, double theta);
|
|
|
|
template <>
|
|
GTSAM_EXPORT
|
|
SO3 SO3::ClosestTo(const Matrix3& M);
|
|
|
|
template <>
|
|
GTSAM_EXPORT
|
|
SO3 SO3::ChordalMean(const std::vector<SO3>& rotations);
|
|
|
|
template <>
|
|
GTSAM_EXPORT
|
|
Matrix3 SO3::Hat(const Vector3& xi); ///< make skew symmetric matrix
|
|
|
|
template <>
|
|
GTSAM_EXPORT
|
|
Vector3 SO3::Vee(const Matrix3& X); ///< inverse of Hat
|
|
|
|
/// Adjoint map
|
|
template <>
|
|
Matrix3 SO3::AdjointMap() const;
|
|
|
|
/**
|
|
* Exponential map at identity - create a rotation from canonical coordinates
|
|
* \f$ [R_x,R_y,R_z] \f$ using Rodrigues' formula
|
|
*/
|
|
template <>
|
|
GTSAM_EXPORT
|
|
SO3 SO3::Expmap(const Vector3& omega, ChartJacobian H);
|
|
|
|
/// Derivative of Expmap
|
|
template <>
|
|
GTSAM_EXPORT
|
|
Matrix3 SO3::ExpmapDerivative(const Vector3& omega);
|
|
|
|
/**
|
|
* Log map at identity - returns the canonical coordinates
|
|
* \f$ [R_x,R_y,R_z] \f$ of this rotation
|
|
*/
|
|
template <>
|
|
GTSAM_EXPORT
|
|
Vector3 SO3::Logmap(const SO3& R, ChartJacobian H);
|
|
|
|
/// Derivative of Logmap
|
|
template <>
|
|
GTSAM_EXPORT
|
|
Matrix3 SO3::LogmapDerivative(const Vector3& omega);
|
|
|
|
// Chart at origin for SO3 is *not* Cayley but actual Expmap/Logmap
|
|
template <>
|
|
GTSAM_EXPORT
|
|
SO3 SO3::ChartAtOrigin::Retract(const Vector3& omega, ChartJacobian H);
|
|
|
|
template <>
|
|
GTSAM_EXPORT
|
|
Vector3 SO3::ChartAtOrigin::Local(const SO3& R, ChartJacobian H);
|
|
|
|
template <>
|
|
GTSAM_EXPORT
|
|
Vector9 SO3::vec(OptionalJacobian<9, 3> H) const;
|
|
|
|
/** Serialization function */
|
|
template <class Archive>
|
|
void serialize(Archive& ar, SO3& R, const unsigned int /*version*/) {
|
|
Matrix3& M = R.matrix_;
|
|
ar& boost::serialization::make_nvp("R11", M(0, 0));
|
|
ar& boost::serialization::make_nvp("R12", M(0, 1));
|
|
ar& boost::serialization::make_nvp("R13", M(0, 2));
|
|
ar& boost::serialization::make_nvp("R21", M(1, 0));
|
|
ar& boost::serialization::make_nvp("R22", M(1, 1));
|
|
ar& boost::serialization::make_nvp("R23", M(1, 2));
|
|
ar& boost::serialization::make_nvp("R31", M(2, 0));
|
|
ar& boost::serialization::make_nvp("R32", M(2, 1));
|
|
ar& boost::serialization::make_nvp("R33", M(2, 2));
|
|
}
|
|
|
|
namespace so3 {
|
|
|
|
/**
|
|
* Compose general matrix with an SO(3) element.
|
|
* We only provide the 9*9 derivative in the first argument M.
|
|
*/
|
|
GTSAM_EXPORT Matrix3 compose(const Matrix3& M, const SO3& R,
|
|
OptionalJacobian<9, 9> H = {});
|
|
|
|
/// (constant) Jacobian of compose wrpt M
|
|
GTSAM_EXPORT Matrix99 Dcompose(const SO3& R);
|
|
|
|
// Below are two functors that allow for saving computation when exponential map
|
|
// and its derivatives are needed at the same location in so<3>. The second
|
|
// functor also implements dedicated methods to apply dexp and/or inv(dexp).
|
|
|
|
/// Functor implementing Exponential map
|
|
class GTSAM_EXPORT ExpmapFunctor {
|
|
protected:
|
|
const double theta2;
|
|
Matrix3 W, K, KK;
|
|
bool nearZero;
|
|
double theta, sin_theta, one_minus_cos; // only defined if !nearZero
|
|
|
|
void init(bool nearZeroApprox = false);
|
|
|
|
public:
|
|
/// Constructor with element of Lie algebra so(3)
|
|
explicit ExpmapFunctor(const Vector3& omega, bool nearZeroApprox = false);
|
|
|
|
/// Constructor with axis-angle
|
|
ExpmapFunctor(const Vector3& axis, double angle, bool nearZeroApprox = false);
|
|
|
|
/// Rodrigues formula
|
|
SO3 expmap() const;
|
|
};
|
|
|
|
/// Functor that implements Exponential map *and* its derivatives
|
|
class DexpFunctor : public ExpmapFunctor {
|
|
const Vector3 omega;
|
|
double a, b;
|
|
Matrix3 dexp_;
|
|
|
|
public:
|
|
/// Constructor with element of Lie algebra so(3)
|
|
GTSAM_EXPORT explicit DexpFunctor(const Vector3& omega, bool nearZeroApprox = false);
|
|
|
|
// NOTE(luca): Right Jacobian for Exponential map in SO(3) - equation
|
|
// (10.86) and following equations in G.S. Chirikjian, "Stochastic Models,
|
|
// Information Theory, and Lie Groups", Volume 2, 2008.
|
|
// expmap(omega + v) \approx expmap(omega) * expmap(dexp * v)
|
|
// This maps a perturbation v in the tangent space to
|
|
// a perturbation on the manifold Expmap(dexp * v) */
|
|
const Matrix3& dexp() const { return dexp_; }
|
|
|
|
/// Multiplies with dexp(), with optional derivatives
|
|
GTSAM_EXPORT Vector3 applyDexp(const Vector3& v, OptionalJacobian<3, 3> H1 = {},
|
|
OptionalJacobian<3, 3> H2 = {}) const;
|
|
|
|
/// Multiplies with dexp().inverse(), with optional derivatives
|
|
GTSAM_EXPORT Vector3 applyInvDexp(const Vector3& v,
|
|
OptionalJacobian<3, 3> H1 = {},
|
|
OptionalJacobian<3, 3> H2 = {}) const;
|
|
};
|
|
} // namespace so3
|
|
|
|
/*
|
|
* Define the traits. internal::LieGroup provides both Lie group and Testable
|
|
*/
|
|
|
|
template <>
|
|
struct traits<SO3> : public internal::LieGroup<SO3> {};
|
|
|
|
template <>
|
|
struct traits<const SO3> : public internal::LieGroup<SO3> {};
|
|
|
|
} // end namespace gtsam
|