gtsam/gtsam/discrete/DiscreteFactorGraph.h

243 lines
7.6 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file DiscreteFactorGraph.h
* @date Feb 14, 2011
* @author Duy-Nguyen Ta
* @author Frank Dellaert
*/
#pragma once
#include <gtsam/discrete/DecisionTreeFactor.h>
#include <gtsam/discrete/DiscreteLookupDAG.h>
#include <gtsam/inference/EliminateableFactorGraph.h>
#include <gtsam/inference/FactorGraph.h>
#include <gtsam/inference/Ordering.h>
#include <gtsam/base/FastSet.h>
#include <boost/make_shared.hpp>
#include <string>
#include <utility>
#include <vector>
namespace gtsam {
// Forward declarations
class DiscreteFactorGraph;
class DiscreteConditional;
class DiscreteBayesNet;
class DiscreteEliminationTree;
class DiscreteBayesTree;
class DiscreteJunctionTree;
/**
* @brief Main elimination function for DiscreteFactorGraph.
*
* @param factors
* @param keys
* @return GTSAM_EXPORT
* @ingroup discrete
*/
GTSAM_EXPORT std::pair<boost::shared_ptr<DiscreteConditional>, DecisionTreeFactor::shared_ptr>
EliminateDiscrete(const DiscreteFactorGraph& factors, const Ordering& keys);
/* ************************************************************************* */
template<> struct EliminationTraits<DiscreteFactorGraph>
{
typedef DiscreteFactor FactorType; ///< Type of factors in factor graph
typedef DiscreteFactorGraph FactorGraphType; ///< Type of the factor graph (e.g. DiscreteFactorGraph)
typedef DiscreteConditional ConditionalType; ///< Type of conditionals from elimination
typedef DiscreteBayesNet BayesNetType; ///< Type of Bayes net from sequential elimination
typedef DiscreteEliminationTree EliminationTreeType; ///< Type of elimination tree
typedef DiscreteBayesTree BayesTreeType; ///< Type of Bayes tree
typedef DiscreteJunctionTree JunctionTreeType; ///< Type of Junction tree
/// The default dense elimination function
static std::pair<boost::shared_ptr<ConditionalType>,
boost::shared_ptr<FactorType> >
DefaultEliminate(const FactorGraphType& factors, const Ordering& keys) {
return EliminateDiscrete(factors, keys);
}
/// The default ordering generation function
static Ordering DefaultOrderingFunc(
const FactorGraphType& graph,
std::optional<std::reference_wrapper<const VariableIndex>> variableIndex) {
return Ordering::Colamd((*variableIndex).get());
}
};
/* ************************************************************************* */
/**
* A Discrete Factor Graph is a factor graph where all factors are Discrete, i.e.
* Factor == DiscreteFactor
* @ingroup discrete
*/
class GTSAM_EXPORT DiscreteFactorGraph
: public FactorGraph<DiscreteFactor>,
public EliminateableFactorGraph<DiscreteFactorGraph> {
public:
using This = DiscreteFactorGraph; ///< this class
using Base = FactorGraph<DiscreteFactor>; ///< base factor graph type
using BaseEliminateable =
EliminateableFactorGraph<This>; ///< for elimination
using shared_ptr = boost::shared_ptr<This>; ///< shared_ptr to This
using Values = DiscreteValues; ///< backwards compatibility
using Indices = KeyVector; ///> map from keys to values
/** Default constructor */
DiscreteFactorGraph() {}
/** Construct from iterator over factors */
template <typename ITERATOR>
DiscreteFactorGraph(ITERATOR firstFactor, ITERATOR lastFactor)
: Base(firstFactor, lastFactor) {}
/** Construct from container of factors (shared_ptr or plain objects) */
template <class CONTAINER>
explicit DiscreteFactorGraph(const CONTAINER& factors) : Base(factors) {}
/** Implicit copy/downcast constructor to override explicit template container
* constructor */
template <class DERIVEDFACTOR>
DiscreteFactorGraph(const FactorGraph<DERIVEDFACTOR>& graph) : Base(graph) {}
/// Destructor
virtual ~DiscreteFactorGraph() {}
/// @name Testable
/// @{
bool equals(const This& fg, double tol = 1e-9) const;
/// @}
/** Add a decision-tree factor */
template <typename... Args>
void add(Args&&... args) {
emplace_shared<DecisionTreeFactor>(std::forward<Args>(args)...);
}
/** Return the set of variables involved in the factors (set union) */
KeySet keys() const;
/// Return the DiscreteKeys in this factor graph.
DiscreteKeys discreteKeys() const;
/** return product of all factors as a single factor */
DecisionTreeFactor product() const;
/**
* Evaluates the factor graph given values, returns the joint probability of
* the factor graph given specific instantiation of values
*/
double operator()(const DiscreteValues& values) const;
/// print
void print(
const std::string& s = "DiscreteFactorGraph",
const KeyFormatter& formatter = DefaultKeyFormatter) const override;
/**
* @brief Implement the sum-product algorithm
*
* @param orderingType : one of COLAMD, METIS, NATURAL, CUSTOM
* @return DiscreteBayesNet encoding posterior P(X|Z)
*/
DiscreteBayesNet sumProduct(
OptionalOrderingType orderingType = {}) const;
/**
* @brief Implement the sum-product algorithm
*
* @param ordering
* @return DiscreteBayesNet encoding posterior P(X|Z)
*/
DiscreteBayesNet sumProduct(const Ordering& ordering) const;
/**
* @brief Implement the max-product algorithm
*
* @param orderingType : one of COLAMD, METIS, NATURAL, CUSTOM
* @return DiscreteLookupDAG DAG with lookup tables
*/
DiscreteLookupDAG maxProduct(
OptionalOrderingType orderingType = {}) const;
/**
* @brief Implement the max-product algorithm
*
* @param ordering
* @return DiscreteLookupDAG `DAG with lookup tables
*/
DiscreteLookupDAG maxProduct(const Ordering& ordering) const;
/**
* @brief Find the maximum probable explanation (MPE) by doing max-product.
*
* @param orderingType
* @return DiscreteValues : MPE
*/
DiscreteValues optimize(
OptionalOrderingType orderingType = {}) const;
/**
* @brief Find the maximum probable explanation (MPE) by doing max-product.
*
* @param ordering
* @return DiscreteValues : MPE
*/
DiscreteValues optimize(const Ordering& ordering) const;
/// @name Wrapper support
/// @{
/**
* @brief Render as markdown tables
*
* @param keyFormatter GTSAM-style Key formatter.
* @param names optional, a map from Key to category names.
* @return std::string a (potentially long) markdown string.
*/
std::string markdown(const KeyFormatter& keyFormatter = DefaultKeyFormatter,
const DiscreteFactor::Names& names = {}) const;
/**
* @brief Render as html tables
*
* @param keyFormatter GTSAM-style Key formatter.
* @param names optional, a map from Key to category names.
* @return std::string a (potentially long) html string.
*/
std::string html(const KeyFormatter& keyFormatter = DefaultKeyFormatter,
const DiscreteFactor::Names& names = {}) const;
/// @}
/// @name HybridValues methods.
/// @{
using Base::error; // Expose error(const HybridValues&) method..
/// @}
}; // \ DiscreteFactorGraph
std::pair<DiscreteConditional::shared_ptr, DecisionTreeFactor::shared_ptr> //
EliminateForMPE(const DiscreteFactorGraph& factors,
const Ordering& frontalKeys);
/// traits
template <>
struct traits<DiscreteFactorGraph> : public Testable<DiscreteFactorGraph> {};
} // namespace gtsam