gtsam/gtsam/slam/tests/testGeneralSFMFactor.cpp

436 lines
15 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testGeneralSFMFactor.cpp
* @date Dec 27, 2010
* @author nikai
* @brief unit tests for GeneralSFMFactor
*/
#include <gtsam/slam/GeneralSFMFactor.h>
#include <gtsam/slam/RangeFactor.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/nonlinear/NonlinearEquality.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/linear/VectorValues.h>
#include <gtsam/geometry/Cal3_S2.h>
#include <gtsam/geometry/PinholeCamera.h>
#include <gtsam/base/Testable.h>
#include <boost/shared_ptr.hpp>
#include <CppUnitLite/TestHarness.h>
using namespace boost;
#include <iostream>
#include <vector>
using namespace std;
using namespace gtsam;
// Convenience for named keys
using symbol_shorthand::X;
using symbol_shorthand::L;
typedef PinholeCamera<Cal3_S2> GeneralCamera;
typedef GeneralSFMFactor<GeneralCamera, Point3> Projection;
typedef NonlinearEquality<GeneralCamera> CameraConstraint;
typedef NonlinearEquality<Point3> Point3Constraint;
class Graph: public NonlinearFactorGraph {
public:
void addMeasurement(int i, int j, const Point2& z, const SharedNoiseModel& model) {
push_back(boost::make_shared<Projection>(z, model, X(i), L(j)));
}
void addCameraConstraint(int j, const GeneralCamera& p) {
boost::shared_ptr<CameraConstraint> factor(new CameraConstraint(X(j), p));
push_back(factor);
}
void addPoint3Constraint(int j, const Point3& p) {
boost::shared_ptr<Point3Constraint> factor(new Point3Constraint(L(j), p));
push_back(factor);
}
};
static double getGaussian()
{
double S,V1,V2;
// Use Box-Muller method to create gauss noise from uniform noise
do
{
double U1 = rand() / (double)(RAND_MAX);
double U2 = rand() / (double)(RAND_MAX);
V1 = 2 * U1 - 1; /* V1=[-1,1] */
V2 = 2 * U2 - 1; /* V2=[-1,1] */
S = V1 * V1 + V2 * V2;
} while(S>=1);
return sqrt(-2.0f * (double)log(S) / S) * V1;
}
static const SharedNoiseModel sigma1(noiseModel::Unit::Create(2));
/* ************************************************************************* */
TEST( GeneralSFMFactor, equals )
{
// Create two identical factors and make sure they're equal
Vector z = (Vector(2) << 323.,240.).finished();
const Symbol cameraFrameNumber('x',1), landmarkNumber('l',1);
const SharedNoiseModel sigma(noiseModel::Unit::Create(1));
boost::shared_ptr<Projection>
factor1(new Projection(z, sigma, cameraFrameNumber, landmarkNumber));
boost::shared_ptr<Projection>
factor2(new Projection(z, sigma, cameraFrameNumber, landmarkNumber));
EXPECT(assert_equal(*factor1, *factor2));
}
/* ************************************************************************* */
TEST( GeneralSFMFactor, error ) {
Point2 z(3.,0.);
const SharedNoiseModel sigma(noiseModel::Unit::Create(1));
boost::shared_ptr<Projection> factor(new Projection(z, sigma, X(1), L(1)));
// For the following configuration, the factor predicts 320,240
Values values;
Rot3 R;
Point3 t1(0,0,-6);
Pose3 x1(R,t1);
values.insert(X(1), GeneralCamera(x1));
Point3 l1; values.insert(L(1), l1);
EXPECT(assert_equal(((Vector) (Vector(2) << -3.0, 0.0).finished()), factor->unwhitenedError(values)));
}
static const double baseline = 5.0 ;
/* ************************************************************************* */
static vector<Point3> genPoint3() {
const double z = 5;
vector<Point3> landmarks ;
landmarks.push_back(Point3 (-1.0,-1.0, z));
landmarks.push_back(Point3 (-1.0, 1.0, z));
landmarks.push_back(Point3 ( 1.0, 1.0, z));
landmarks.push_back(Point3 ( 1.0,-1.0, z));
landmarks.push_back(Point3 (-1.5,-1.5, 1.5*z));
landmarks.push_back(Point3 (-1.5, 1.5, 1.5*z));
landmarks.push_back(Point3 ( 1.5, 1.5, 1.5*z));
landmarks.push_back(Point3 ( 1.5,-1.5, 1.5*z));
landmarks.push_back(Point3 (-2.0,-2.0, 2*z));
landmarks.push_back(Point3 (-2.0, 2.0, 2*z));
landmarks.push_back(Point3 ( 2.0, 2.0, 2*z));
landmarks.push_back(Point3 ( 2.0,-2.0, 2*z));
return landmarks ;
}
static vector<GeneralCamera> genCameraDefaultCalibration() {
vector<GeneralCamera> X ;
X.push_back(GeneralCamera(Pose3(eye(3),Point3(-baseline/2.0, 0.0, 0.0))));
X.push_back(GeneralCamera(Pose3(eye(3),Point3( baseline/2.0, 0.0, 0.0))));
return X ;
}
static vector<GeneralCamera> genCameraVariableCalibration() {
const Cal3_S2 K(640,480,0.01,320,240);
vector<GeneralCamera> X ;
X.push_back(GeneralCamera(Pose3(eye(3),Point3(-baseline/2.0, 0.0, 0.0)), K));
X.push_back(GeneralCamera(Pose3(eye(3),Point3( baseline/2.0, 0.0, 0.0)), K));
return X ;
}
static boost::shared_ptr<Ordering> getOrdering(const vector<GeneralCamera>& cameras, const vector<Point3>& landmarks) {
boost::shared_ptr<Ordering> ordering(new Ordering);
for ( size_t i = 0 ; i < landmarks.size() ; ++i ) ordering->push_back(L(i)) ;
for ( size_t i = 0 ; i < cameras.size() ; ++i ) ordering->push_back(X(i)) ;
return ordering ;
}
/* ************************************************************************* */
TEST( GeneralSFMFactor, optimize_defaultK ) {
vector<Point3> landmarks = genPoint3();
vector<GeneralCamera> cameras = genCameraDefaultCalibration();
// add measurement with noise
Graph graph;
for ( size_t j = 0 ; j < cameras.size() ; ++j) {
for ( size_t i = 0 ; i < landmarks.size() ; ++i) {
Point2 pt = cameras[j].project(landmarks[i]) ;
graph.addMeasurement(j, i, pt, sigma1);
}
}
const size_t nMeasurements = cameras.size()*landmarks.size() ;
// add initial
const double noise = baseline*0.1;
Values values;
for ( size_t i = 0 ; i < cameras.size() ; ++i )
values.insert(X(i), cameras[i]) ;
for ( size_t i = 0 ; i < landmarks.size() ; ++i ) {
Point3 pt(landmarks[i].x()+noise*getGaussian(),
landmarks[i].y()+noise*getGaussian(),
landmarks[i].z()+noise*getGaussian());
values.insert(L(i), pt) ;
}
graph.addCameraConstraint(0, cameras[0]);
// Create an ordering of the variables
Ordering ordering = *getOrdering(cameras,landmarks);
LevenbergMarquardtOptimizer optimizer(graph, values, ordering);
Values final = optimizer.optimize();
EXPECT(optimizer.error() < 0.5 * 1e-5 * nMeasurements);
}
/* ************************************************************************* */
TEST( GeneralSFMFactor, optimize_varK_SingleMeasurementError ) {
vector<Point3> landmarks = genPoint3();
vector<GeneralCamera> cameras = genCameraVariableCalibration();
// add measurement with noise
Graph graph;
for ( size_t j = 0 ; j < cameras.size() ; ++j) {
for ( size_t i = 0 ; i < landmarks.size() ; ++i) {
Point2 pt = cameras[j].project(landmarks[i]) ;
graph.addMeasurement(j, i, pt, sigma1);
}
}
const size_t nMeasurements = cameras.size()*landmarks.size() ;
// add initial
const double noise = baseline*0.1;
Values values;
for ( size_t i = 0 ; i < cameras.size() ; ++i )
values.insert(X(i), cameras[i]) ;
// add noise only to the first landmark
for ( size_t i = 0 ; i < landmarks.size() ; ++i ) {
if ( i == 0 ) {
Point3 pt(landmarks[i].x()+noise*getGaussian(),
landmarks[i].y()+noise*getGaussian(),
landmarks[i].z()+noise*getGaussian());
values.insert(L(i), pt) ;
}
else {
values.insert(L(i), landmarks[i]) ;
}
}
graph.addCameraConstraint(0, cameras[0]);
const double reproj_error = 1e-5;
Ordering ordering = *getOrdering(cameras,landmarks);
LevenbergMarquardtOptimizer optimizer(graph, values, ordering);
Values final = optimizer.optimize();
EXPECT(optimizer.error() < 0.5 * reproj_error * nMeasurements);
}
/* ************************************************************************* */
TEST( GeneralSFMFactor, optimize_varK_FixCameras ) {
vector<Point3> landmarks = genPoint3();
vector<GeneralCamera> cameras = genCameraVariableCalibration();
// add measurement with noise
const double noise = baseline*0.1;
Graph graph;
for ( size_t j = 0 ; j < cameras.size() ; ++j) {
for ( size_t i = 0 ; i < landmarks.size() ; ++i) {
Point2 pt = cameras[j].project(landmarks[i]) ;
graph.addMeasurement(j, i, pt, sigma1);
}
}
const size_t nMeasurements = landmarks.size()*cameras.size();
Values values;
for ( size_t i = 0 ; i < cameras.size() ; ++i )
values.insert(X(i), cameras[i]) ;
for ( size_t i = 0 ; i < landmarks.size() ; ++i ) {
Point3 pt(landmarks[i].x()+noise*getGaussian(),
landmarks[i].y()+noise*getGaussian(),
landmarks[i].z()+noise*getGaussian());
//Point3 pt(landmarks[i].x(), landmarks[i].y(), landmarks[i].z());
values.insert(L(i), pt) ;
}
for ( size_t i = 0 ; i < cameras.size() ; ++i )
graph.addCameraConstraint(i, cameras[i]);
const double reproj_error = 1e-5 ;
Ordering ordering = *getOrdering(cameras,landmarks);
LevenbergMarquardtOptimizer optimizer(graph, values, ordering);
Values final = optimizer.optimize();
EXPECT(optimizer.error() < 0.5 * reproj_error * nMeasurements);
}
/* ************************************************************************* */
TEST( GeneralSFMFactor, optimize_varK_FixLandmarks ) {
vector<Point3> landmarks = genPoint3();
vector<GeneralCamera> cameras = genCameraVariableCalibration();
// add measurement with noise
Graph graph;
for ( size_t j = 0 ; j < cameras.size() ; ++j) {
for ( size_t i = 0 ; i < landmarks.size() ; ++i) {
Point2 pt = cameras[j].project(landmarks[i]) ;
graph.addMeasurement(j, i, pt, sigma1);
}
}
const size_t nMeasurements = landmarks.size()*cameras.size();
Values values;
for ( size_t i = 0 ; i < cameras.size() ; ++i ) {
const double
rot_noise = 1e-5,
trans_noise = 1e-3,
focal_noise = 1,
skew_noise = 1e-5;
if ( i == 0 ) {
values.insert(X(i), cameras[i]) ;
}
else {
Vector delta = (Vector(11) <<
rot_noise, rot_noise, rot_noise, // rotation
trans_noise, trans_noise, trans_noise, // translation
focal_noise, focal_noise, // f_x, f_y
skew_noise, // s
trans_noise, trans_noise // ux, uy
).finished();
values.insert(X(i), cameras[i].retract(delta)) ;
}
}
for ( size_t i = 0 ; i < landmarks.size() ; ++i ) {
values.insert(L(i), landmarks[i]) ;
}
// fix X0 and all landmarks, allow only the cameras[1] to move
graph.addCameraConstraint(0, cameras[0]);
for ( size_t i = 0 ; i < landmarks.size() ; ++i )
graph.addPoint3Constraint(i, landmarks[i]);
const double reproj_error = 1e-5 ;
Ordering ordering = *getOrdering(cameras,landmarks);
LevenbergMarquardtOptimizer optimizer(graph, values, ordering);
Values final = optimizer.optimize();
EXPECT(optimizer.error() < 0.5 * reproj_error * nMeasurements);
}
/* ************************************************************************* */
TEST( GeneralSFMFactor, optimize_varK_BA ) {
vector<Point3> landmarks = genPoint3();
vector<GeneralCamera> cameras = genCameraVariableCalibration();
// add measurement with noise
Graph graph;
for ( size_t j = 0 ; j < cameras.size() ; ++j) {
for ( size_t i = 0 ; i < landmarks.size() ; ++i) {
Point2 pt = cameras[j].project(landmarks[i]) ;
graph.addMeasurement(j, i, pt, sigma1);
}
}
const size_t nMeasurements = cameras.size()*landmarks.size() ;
// add initial
const double noise = baseline*0.1;
Values values;
for ( size_t i = 0 ; i < cameras.size() ; ++i )
values.insert(X(i), cameras[i]) ;
// add noise only to the first landmark
for ( size_t i = 0 ; i < landmarks.size() ; ++i ) {
Point3 pt(landmarks[i].x()+noise*getGaussian(),
landmarks[i].y()+noise*getGaussian(),
landmarks[i].z()+noise*getGaussian());
values.insert(L(i), pt) ;
}
// Constrain position of system with the first camera constrained to the origin
graph.addCameraConstraint(0, cameras[0]);
// Constrain the scale of the problem with a soft range factor of 1m between the cameras
graph.push_back(RangeFactor<GeneralCamera,GeneralCamera>(X(0), X(1), 2.0, noiseModel::Isotropic::Sigma(1, 10.0)));
const double reproj_error = 1e-5 ;
Ordering ordering = *getOrdering(cameras,landmarks);
LevenbergMarquardtOptimizer optimizer(graph, values, ordering);
Values final = optimizer.optimize();
EXPECT(optimizer.error() < 0.5 * reproj_error * nMeasurements);
}
/* ************************************************************************* */
TEST(GeneralSFMFactor, GeneralCameraPoseRange) {
// Tests range factor between a GeneralCamera and a Pose3
Graph graph;
graph.addCameraConstraint(0, GeneralCamera());
graph.push_back(RangeFactor<GeneralCamera, Pose3>(X(0), X(1), 2.0, noiseModel::Isotropic::Sigma(1, 1.0)));
graph.push_back(PriorFactor<Pose3>(X(1), Pose3(Rot3(), Point3(1.0, 0.0, 0.0)), noiseModel::Isotropic::Sigma(6, 1.0)));
Values init;
init.insert(X(0), GeneralCamera());
init.insert(X(1), Pose3(Rot3(), Point3(1.0,1.0,1.0)));
// The optimal value between the 2m range factor and 1m prior is 1.5m
Values expected;
expected.insert(X(0), GeneralCamera());
expected.insert(X(1), Pose3(Rot3(), Point3(1.5,0.0,0.0)));
LevenbergMarquardtParams params;
params.absoluteErrorTol = 1e-9;
params.relativeErrorTol = 1e-9;
Values actual = LevenbergMarquardtOptimizer(graph, init, params).optimize();
EXPECT(assert_equal(expected, actual, 1e-4));
}
/* ************************************************************************* */
TEST(GeneralSFMFactor, CalibratedCameraPoseRange) {
// Tests range factor between a CalibratedCamera and a Pose3
NonlinearFactorGraph graph;
graph.push_back(PriorFactor<CalibratedCamera>(X(0), CalibratedCamera(), noiseModel::Isotropic::Sigma(6, 1.0)));
graph.push_back(RangeFactor<CalibratedCamera, Pose3>(X(0), X(1), 2.0, noiseModel::Isotropic::Sigma(1, 1.0)));
graph.push_back(PriorFactor<Pose3>(X(1), Pose3(Rot3(), Point3(1.0, 0.0, 0.0)), noiseModel::Isotropic::Sigma(6, 1.0)));
Values init;
init.insert(X(0), CalibratedCamera());
init.insert(X(1), Pose3(Rot3(), Point3(1.0,1.0,1.0)));
Values expected;
expected.insert(X(0), CalibratedCamera(Pose3(Rot3(), Point3(-0.333333333333, 0, 0))));
expected.insert(X(1), Pose3(Rot3(), Point3(1.333333333333, 0, 0)));
LevenbergMarquardtParams params;
params.absoluteErrorTol = 1e-9;
params.relativeErrorTol = 1e-9;
Values actual = LevenbergMarquardtOptimizer(graph, init, params).optimize();
EXPECT(assert_equal(expected, actual, 1e-4));
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
/* ************************************************************************* */