gtsam/python/gtsam/tests/test_ShonanAveraging.py

203 lines
7.5 KiB
Python

"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
Unit tests for Shonan Rotation Averaging.
Author: Frank Dellaert
"""
# pylint: disable=invalid-name, no-name-in-module, no-member
import unittest
import numpy as np
from gtsam.utils.test_case import GtsamTestCase
import gtsam
from gtsam import (BetweenFactorPose2, LevenbergMarquardtParams, Pose2, Rot2,
ShonanAveraging2, ShonanAveraging3,
ShonanAveragingParameters2, ShonanAveragingParameters3)
DEFAULT_PARAMS = ShonanAveragingParameters3(
gtsam.LevenbergMarquardtParams.CeresDefaults()
)
def fromExampleName(
name: str, parameters: ShonanAveragingParameters3 = DEFAULT_PARAMS
) -> ShonanAveraging3:
g2oFile = gtsam.findExampleDataFile(name)
return ShonanAveraging3(g2oFile, parameters)
class TestShonanAveraging(GtsamTestCase):
"""Tests for Shonan Rotation Averaging."""
def setUp(self):
"""Set up common variables."""
self.shonan = fromExampleName("toyExample.g2o")
def test_checkConstructor(self):
self.assertEqual(5, self.shonan.nrUnknowns())
D = self.shonan.denseD()
self.assertEqual((15, 15), D.shape)
Q = self.shonan.denseQ()
self.assertEqual((15, 15), Q.shape)
L = self.shonan.denseL()
self.assertEqual((15, 15), L.shape)
def test_buildGraphAt(self):
graph = self.shonan.buildGraphAt(5)
self.assertEqual(7, graph.size())
def test_checkOptimality(self):
random = self.shonan.initializeRandomlyAt(4)
lambdaMin = self.shonan.computeMinEigenValue(random)
self.assertAlmostEqual(-414.87376657555996,
lambdaMin, places=3) # Regression test
self.assertFalse(self.shonan.checkOptimality(random))
def test_tryOptimizingAt3(self):
initial = self.shonan.initializeRandomlyAt(3)
self.assertFalse(self.shonan.checkOptimality(initial))
result = self.shonan.tryOptimizingAt(3, initial)
self.assertTrue(self.shonan.checkOptimality(result))
lambdaMin = self.shonan.computeMinEigenValue(result)
self.assertAlmostEqual(-5.427688831332745e-07,
lambdaMin, places=3) # Regression test
self.assertAlmostEqual(0, self.shonan.costAt(3, result), places=3)
SO3Values = self.shonan.roundSolution(result)
self.assertAlmostEqual(0, self.shonan.cost(SO3Values), places=3)
def test_tryOptimizingAt4(self):
random = self.shonan.initializeRandomlyAt(4)
result = self.shonan.tryOptimizingAt(4, random)
self.assertTrue(self.shonan.checkOptimality(result))
self.assertAlmostEqual(0, self.shonan.costAt(4, result), places=2)
lambdaMin = self.shonan.computeMinEigenValue(result)
self.assertAlmostEqual(-5.427688831332745e-07,
lambdaMin, places=3) # Regression test
SO3Values = self.shonan.roundSolution(result)
self.assertAlmostEqual(0, self.shonan.cost(SO3Values), places=3)
def test_initializeWithDescent(self):
random = self.shonan.initializeRandomlyAt(3)
Qstar3 = self.shonan.tryOptimizingAt(3, random)
lambdaMin, minEigenVector = self.shonan.computeMinEigenVector(Qstar3)
initialQ4 = self.shonan.initializeWithDescent(
4, Qstar3, minEigenVector, lambdaMin)
self.assertAlmostEqual(5, initialQ4.size())
def test_run(self):
initial = self.shonan.initializeRandomly()
result, lambdaMin = self.shonan.run(initial, 5, 10)
self.assertAlmostEqual(0, self.shonan.cost(result), places=2)
self.assertAlmostEqual(-5.427688831332745e-07,
lambdaMin, places=3) # Regression test
def test_runKlausKarcher(self):
# Load 2D toy example
lmParams = gtsam.LevenbergMarquardtParams.CeresDefaults()
# lmParams.setVerbosityLM("SUMMARY")
g2oFile = gtsam.findExampleDataFile("noisyToyGraph.txt")
parameters = gtsam.ShonanAveragingParameters2(lmParams)
shonan = gtsam.ShonanAveraging2(g2oFile, parameters)
self.assertAlmostEqual(4, shonan.nrUnknowns())
# Check graph building
graph = shonan.buildGraphAt(2)
self.assertAlmostEqual(6, graph.size())
initial = shonan.initializeRandomly()
result, lambdaMin = shonan.run(initial, 2, 10)
self.assertAlmostEqual(0.0008211, shonan.cost(result), places=5)
self.assertAlmostEqual(0, lambdaMin, places=9) # certificate!
# Test alpha/beta/gamma prior weighting.
def test_PriorWeights(self):
lmParams = gtsam.LevenbergMarquardtParams.CeresDefaults()
params = ShonanAveragingParameters3(lmParams)
self.assertAlmostEqual(0, params.getAnchorWeight(), 1e-9)
self.assertAlmostEqual(1, params.getKarcherWeight(), 1e-9)
self.assertAlmostEqual(0, params.getGaugesWeight(), 1e-9)
alpha, beta, gamma = 100.0, 200.0, 300.0
params.setAnchorWeight(alpha)
params.setKarcherWeight(beta)
params.setGaugesWeight(gamma)
self.assertAlmostEqual(alpha, params.getAnchorWeight(), 1e-9)
self.assertAlmostEqual(beta, params.getKarcherWeight(), 1e-9)
self.assertAlmostEqual(gamma, params.getGaugesWeight(), 1e-9)
params.setKarcherWeight(0)
shonan = fromExampleName("Klaus3.g2o", params)
initial = gtsam.Values()
for i in range(3):
initial.insert(i, gtsam.Rot3())
self.assertAlmostEqual(3.0756, shonan.cost(initial), places=3)
result, _lambdaMin = shonan.run(initial, 3, 3)
self.assertAlmostEqual(0.0015, shonan.cost(result), places=3)
def test_constructorBetweenFactorPose2s(self) -> None:
"""Check if ShonanAveraging2 constructor works when not initialized from g2o file.
GT pose graph:
| cam 1 = (0,4)
--o
| .
. .
. .
| |
o-- ... o--
cam 0 cam 2 = (4,0)
(0,0)
"""
num_images = 3
wTi_list = [
Pose2(Rot2.fromDegrees(0), np.array([0, 0])),
Pose2(Rot2.fromDegrees(90), np.array([0, 4])),
Pose2(Rot2.fromDegrees(0), np.array([4, 0])),
]
edges = [(0, 1), (1, 2), (0, 2)]
i2Ri1_dict = {
(i1, i2): wTi_list[i2].inverse().compose(wTi_list[i1]).rotation()
for (i1, i2) in edges
}
lm_params = LevenbergMarquardtParams.CeresDefaults()
shonan_params = ShonanAveragingParameters2(lm_params)
shonan_params.setUseHuber(False)
shonan_params.setCertifyOptimality(True)
noise_model = gtsam.noiseModel.Unit.Create(3)
between_factors = []
for (i1, i2), i2Ri1 in i2Ri1_dict.items():
i2Ti1 = Pose2(i2Ri1, np.zeros(2))
between_factors.append(
BetweenFactorPose2(i2, i1, i2Ti1, noise_model)
)
obj = ShonanAveraging2(between_factors, shonan_params)
initial = obj.initializeRandomly()
result_values, _ = obj.run(initial, min_p=2, max_p=100)
wRi_list = [result_values.atRot2(i) for i in range(num_images)]
thetas_deg = np.array([wRi.degrees() for wRi in wRi_list])
# map all angles to [0,360)
thetas_deg = thetas_deg % 360
thetas_deg -= thetas_deg[0]
expected_thetas_deg = np.array([0.0, 90.0, 0.0])
np.testing.assert_allclose(thetas_deg, expected_thetas_deg, atol=0.1)
if __name__ == "__main__":
unittest.main()