gtsam/examples/Hybrid_City10000.cpp

317 lines
11 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010-2020, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Hybrid_City10000.cpp
* @brief Example of using hybrid estimation
* with multiple odometry measurements.
* @author Varun Agrawal
* @date January 22, 2025
*/
#include <gtsam/geometry/Pose2.h>
#include <gtsam/hybrid/HybridNonlinearFactor.h>
#include <gtsam/hybrid/HybridNonlinearFactorGraph.h>
#include <gtsam/hybrid/HybridSmoother.h>
#include <gtsam/hybrid/HybridValues.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/slam/dataset.h>
#include <time.h>
#include <cstdlib>
#include <fstream>
#include <iostream>
#include <string>
#include <vector>
#include "City10000.h"
using namespace gtsam;
using symbol_shorthand::L;
using symbol_shorthand::M;
using symbol_shorthand::X;
// Experiment Class
class Experiment {
/// The City10000 dataset
City10000Dataset dataset_;
public:
// Parameters with default values
size_t maxLoopCount = 8000;
// 3000: {1: 62s, 2: 21s, 3: 20s, 4: 31s, 5: 39s} No DT optimizations
// 3000: {1: 65s, 2: 20s, 3: 16s, 4: 21s, 5: 28s} With DT optimizations
// 3000: {1: 59s, 2: 19s, 3: 18s, 4: 26s, 5: 33s} With DT optimizations +
// merge
size_t updateFrequency = 3;
size_t maxNrHypotheses = 10;
size_t reLinearizationFrequency = 10;
double marginalThreshold = 0.9999;
private:
HybridSmoother smoother_;
HybridNonlinearFactorGraph newFactors_, allFactors_;
Values initial_;
/**
* @brief Create a hybrid loop closure factor where
* 0 - loose noise model and 1 - loop noise model.
*/
HybridNonlinearFactor hybridLoopClosureFactor(
size_t loopCounter, size_t keyS, size_t keyT,
const Pose2& measurement) const {
DiscreteKey l(L(loopCounter), 2);
auto f0 = std::make_shared<BetweenFactor<Pose2>>(
X(keyS), X(keyT), measurement, kOpenLoopModel);
auto f1 = std::make_shared<BetweenFactor<Pose2>>(
X(keyS), X(keyT), measurement, kPoseNoiseModel);
std::vector<NonlinearFactorValuePair> factors{{f0, kOpenLoopConstant},
{f1, kPoseNoiseConstant}};
HybridNonlinearFactor mixtureFactor(l, factors);
return mixtureFactor;
}
/// @brief Create hybrid odometry factor with discrete measurement choices.
HybridNonlinearFactor hybridOdometryFactor(
size_t numMeasurements, size_t keyS, size_t keyT, const DiscreteKey& m,
const std::vector<Pose2>& poseArray) const {
auto f0 = std::make_shared<BetweenFactor<Pose2>>(
X(keyS), X(keyT), poseArray[0], kPoseNoiseModel);
auto f1 = std::make_shared<BetweenFactor<Pose2>>(
X(keyS), X(keyT), poseArray[1], kPoseNoiseModel);
std::vector<NonlinearFactorValuePair> factors{{f0, kPoseNoiseConstant},
{f1, kPoseNoiseConstant}};
HybridNonlinearFactor mixtureFactor(m, factors);
return mixtureFactor;
}
/// @brief Perform smoother update and optimize the graph.
clock_t smootherUpdate(size_t maxNrHypotheses) {
std::cout << "Smoother update: " << newFactors_.size() << std::endl;
gttic_(SmootherUpdate);
clock_t beforeUpdate = clock();
auto linearized = newFactors_.linearize(initial_);
smoother_.update(*linearized, initial_);
allFactors_.push_back(newFactors_);
newFactors_.resize(0);
clock_t afterUpdate = clock();
return afterUpdate - beforeUpdate;
}
/// @brief Re-linearize, solve ALL, and re-initialize smoother.
clock_t reInitialize() {
std::cout << "================= Re-Initialize: " << allFactors_.size()
<< std::endl;
clock_t beforeUpdate = clock();
allFactors_ = allFactors_.restrict(smoother_.fixedValues());
auto linearized = allFactors_.linearize(initial_);
auto bayesNet = linearized->eliminateSequential();
HybridValues delta = bayesNet->optimize();
initial_ = initial_.retract(delta.continuous());
smoother_.reInitialize(std::move(*bayesNet));
clock_t afterUpdate = clock();
std::cout << "Took " << (afterUpdate - beforeUpdate) / CLOCKS_PER_SEC
<< " seconds." << std::endl;
return afterUpdate - beforeUpdate;
}
public:
/// Construct with filename of experiment to run
explicit Experiment(const std::string& filename)
: dataset_(filename), smoother_(marginalThreshold) {}
/// @brief Run the main experiment with a given maxLoopCount.
void run() {
// Initialize local variables
size_t discreteCount = 0, index = 0, loopCount = 0, updateCount = 0;
std::list<double> timeList;
// Set up initial prior
Pose2 priorPose(0, 0, 0);
initial_.insert(X(0), priorPose);
newFactors_.push_back(
PriorFactor<Pose2>(X(0), priorPose, kPriorNoiseModel));
// Initial update
auto time = smootherUpdate(maxNrHypotheses);
std::vector<std::pair<size_t, double>> smootherUpdateTimes;
smootherUpdateTimes.push_back({index, time});
// Flag to decide whether to run smoother update
size_t numberOfHybridFactors = 0;
// Start main loop
Values result;
size_t keyS = 0, keyT = 0;
clock_t startTime = clock();
std::vector<Pose2> poseArray;
std::pair<size_t, size_t> keys;
while (dataset_.next(&poseArray, &keys) && index < maxLoopCount) {
keyS = keys.first;
keyT = keys.second;
size_t numMeasurements = poseArray.size();
// Take the first one as the initial estimate
Pose2 odomPose = poseArray[0];
if (keyS == keyT - 1) {
// Odometry factor
if (numMeasurements > 1) {
// Add hybrid factor
DiscreteKey m(M(discreteCount), numMeasurements);
HybridNonlinearFactor mixtureFactor =
hybridOdometryFactor(numMeasurements, keyS, keyT, m, poseArray);
newFactors_.push_back(mixtureFactor);
discreteCount++;
numberOfHybridFactors += 1;
std::cout << "mixtureFactor: " << keyS << " " << keyT << std::endl;
} else {
newFactors_.add(BetweenFactor<Pose2>(X(keyS), X(keyT), odomPose,
kPoseNoiseModel));
}
// Insert next pose initial guess
initial_.insert(X(keyT), initial_.at<Pose2>(X(keyS)) * odomPose);
} else {
// Loop closure
HybridNonlinearFactor loopFactor =
hybridLoopClosureFactor(loopCount, keyS, keyT, odomPose);
// print loop closure event keys:
std::cout << "Loop closure: " << keyS << " " << keyT << std::endl;
newFactors_.add(loopFactor);
numberOfHybridFactors += 1;
loopCount++;
}
if (numberOfHybridFactors >= updateFrequency) {
auto time = smootherUpdate(maxNrHypotheses);
smootherUpdateTimes.push_back({index, time});
numberOfHybridFactors = 0;
updateCount++;
if (updateCount % reLinearizationFrequency == 0) {
reInitialize();
}
}
// Record timing for odometry edges only
if (keyS == keyT - 1) {
clock_t curTime = clock();
timeList.push_back(curTime - startTime);
}
// Print some status every 100 steps
if (index % 100 == 0) {
std::cout << "Index: " << index << std::endl;
if (!timeList.empty()) {
std::cout << "Acc_time: " << timeList.back() / CLOCKS_PER_SEC
<< " seconds" << std::endl;
// delta.discrete().print("The Discrete Assignment");
tictoc_finishedIteration_();
tictoc_print_();
}
}
index++;
}
// Final update
time = smootherUpdate(maxNrHypotheses);
smootherUpdateTimes.push_back({index, time});
// Final optimize
gttic_(HybridSmootherOptimize);
HybridValues delta = smoother_.optimize();
gttoc_(HybridSmootherOptimize);
result.insert_or_assign(initial_.retract(delta.continuous()));
std::cout << "Final error: " << smoother_.hybridBayesNet().error(delta)
<< std::endl;
clock_t endTime = clock();
clock_t totalTime = endTime - startTime;
std::cout << "Total time: " << totalTime / CLOCKS_PER_SEC << " seconds"
<< std::endl;
// Write results to file
writeResult(result, keyT + 1, "Hybrid_City10000.txt");
// Write timing info to file
std::ofstream outfileTime;
std::string timeFileName = "Hybrid_City10000_time.txt";
outfileTime.open(timeFileName);
for (auto accTime : timeList) {
outfileTime << accTime << std::endl;
}
outfileTime.close();
std::cout << "Output " << timeFileName << " file." << std::endl;
}
};
/* ************************************************************************* */
// Function to parse command-line arguments
void parseArguments(int argc, char* argv[], size_t& maxLoopCount,
size_t& updateFrequency, size_t& maxNrHypotheses) {
for (int i = 1; i < argc; ++i) {
std::string arg = argv[i];
if (arg == "--max-loop-count" && i + 1 < argc) {
maxLoopCount = std::stoul(argv[++i]);
} else if (arg == "--update-frequency" && i + 1 < argc) {
updateFrequency = std::stoul(argv[++i]);
} else if (arg == "--max-nr-hypotheses" && i + 1 < argc) {
maxNrHypotheses = std::stoul(argv[++i]);
} else if (arg == "--help") {
std::cout << "Usage: " << argv[0] << " [options]\n"
<< "Options:\n"
<< " --max-loop-count <value> Set the maximum loop "
"count (default: 3000)\n"
<< " --update-frequency <value> Set the update frequency "
"(default: 3)\n"
<< " --max-nr-hypotheses <value> Set the maximum number of "
"hypotheses (default: 10)\n"
<< " --help Show this help message\n";
std::exit(0);
}
}
}
/* ************************************************************************* */
// Main function
int main(int argc, char* argv[]) {
Experiment experiment(findExampleDataFile("T1_city10000_04.txt"));
// Experiment experiment("../data/mh_T1_city10000_04.txt"); //Type #1 only
// Experiment experiment("../data/mh_T3b_city10000_10.txt"); //Type #3 only
// Experiment experiment("../data/mh_T1_T3_city10000_04.txt"); //Type #1 +
// Type #3
// Parse command-line arguments
parseArguments(argc, argv, experiment.maxLoopCount,
experiment.updateFrequency, experiment.maxNrHypotheses);
// Run the experiment
experiment.run();
return 0;
}