gtsam/gtsam/linear/GaussianBayesNet.h

272 lines
9.1 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file GaussianBayesNet.h
* @brief Chordal Bayes Net, the result of eliminating a factor graph
* @brief GaussianBayesNet
* @author Frank Dellaert
*/
// \callgraph
#pragma once
#include <gtsam/linear/GaussianConditional.h>
#include <gtsam/inference/BayesNet.h>
#include <gtsam/inference/FactorGraph.h>
#include <gtsam/global_includes.h>
#include <utility>
namespace gtsam {
/**
* GaussianBayesNet is a Bayes net made from linear-Gaussian conditionals.
* @ingroup linear
*/
class GTSAM_EXPORT GaussianBayesNet: public BayesNet<GaussianConditional>
{
public:
typedef BayesNet<GaussianConditional> Base;
typedef GaussianBayesNet This;
typedef GaussianConditional ConditionalType;
typedef std::shared_ptr<This> shared_ptr;
typedef std::shared_ptr<ConditionalType> sharedConditional;
/// @name Standard Constructors
/// @{
/** Construct empty bayes net */
GaussianBayesNet() {}
/** Construct from iterator over conditionals */
template <typename ITERATOR>
GaussianBayesNet(ITERATOR firstConditional, ITERATOR lastConditional)
: Base(firstConditional, lastConditional) {}
/** Construct from container of factors (shared_ptr or plain objects) */
template <class CONTAINER>
explicit GaussianBayesNet(const CONTAINER& conditionals) {
push_back(conditionals);
}
/** Implicit copy/downcast constructor to override explicit template
* container constructor */
template <class DERIVEDCONDITIONAL>
explicit GaussianBayesNet(const FactorGraph<DERIVEDCONDITIONAL>& graph)
: Base(graph) {}
/**
* Constructor that takes an initializer list of shared pointers.
* BayesNet bn = {make_shared<Conditional>(), ...};
*/
template <class DERIVEDCONDITIONAL>
GaussianBayesNet(
std::initializer_list<std::shared_ptr<DERIVEDCONDITIONAL> > conditionals)
: Base(conditionals) {}
/// @}
/// @name Testable
/// @{
/** Check equality */
bool equals(const This& bn, double tol = 1e-9) const;
/// print graph
void print(
const std::string& s = "",
const KeyFormatter& formatter = DefaultKeyFormatter) const override {
Base::print(s, formatter);
}
/// @}
/// @name Standard Interface
/// @{
/// Sum error over all variables.
double error(const VectorValues& x) const;
/// Sum logProbability over all variables.
double logProbability(const VectorValues& x) const;
/**
* Calculate probability density for given values `x`:
* exp(logProbability)
* where x is the vector of values.
*/
double evaluate(const VectorValues& x) const;
/// Evaluate probability density, sugar.
double operator()(const VectorValues& x) const {
return evaluate(x);
}
/// Solve the GaussianBayesNet, i.e. return \f$ x = R^{-1}*d \f$, by
/// back-substitution
VectorValues optimize() const;
/// Version of optimize for incomplete BayesNet, given missing variables
VectorValues optimize(const VectorValues& given) const;
/**
* Sample using ancestral sampling
* Example:
* std::mt19937_64 rng(42);
* auto sample = gbn.sample(&rng);
*/
VectorValues sample(std::mt19937_64* rng) const;
/**
* Sample from an incomplete BayesNet, given missing variables
* Example:
* std::mt19937_64 rng(42);
* VectorValues given = ...;
* auto sample = gbn.sample(given, &rng);
*/
VectorValues sample(const VectorValues& given, std::mt19937_64* rng) const;
/// Sample using ancestral sampling, use default rng
VectorValues sample() const;
/// Sample from an incomplete BayesNet, use default rng
VectorValues sample(const VectorValues& given) const;
/**
* Return ordering corresponding to a topological sort.
* There are many topological sorts of a Bayes net. This one
* corresponds to the one that makes 'matrix' below upper-triangular.
* In case Bayes net is incomplete any non-frontal are added to the end.
*/
Ordering ordering() const;
///@}
///@name Linear Algebra
///@{
/**
* Return (dense) upper-triangular matrix representation
* Will return upper-triangular matrix only when using 'ordering' above.
* In case Bayes net is incomplete zero columns are added to the end.
*/
std::pair<Matrix, Vector> matrix(const Ordering& ordering) const;
/**
* Return (dense) upper-triangular matrix representation
* Will return upper-triangular matrix only when using 'ordering' above.
* In case Bayes net is incomplete zero columns are added to the end.
*/
std::pair<Matrix, Vector> matrix() const;
/**
* Optimize along the gradient direction, with a closed-form computation to perform the line
* search. The gradient is computed about \f$ \delta x=0 \f$.
*
* This function returns \f$ \delta x \f$ that minimizes a reparametrized problem. The error
* function of a GaussianBayesNet is
*
* \f[ f(\delta x) = \frac{1}{2} |R \delta x - d|^2 = \frac{1}{2}d^T d - d^T R \delta x +
* \frac{1}{2} \delta x^T R^T R \delta x \f]
*
* with gradient and Hessian
*
* \f[ g(\delta x) = R^T(R\delta x - d), \qquad G(\delta x) = R^T R. \f]
*
* This function performs the line search in the direction of the gradient evaluated at \f$ g =
* g(\delta x = 0) \f$ with step size \f$ \alpha \f$ that minimizes \f$ f(\delta x = \alpha g)
* \f$:
*
* \f[ f(\alpha) = \frac{1}{2} d^T d + g^T \delta x + \frac{1}{2} \alpha^2 g^T G g \f]
*
* Optimizing by setting the derivative to zero yields \f$ \hat \alpha = (-g^T g) / (g^T G g)
* \f$. For efficiency, this function evaluates the denominator without computing the Hessian
* \f$ G \f$, returning
*
* \f[ \delta x = \hat\alpha g = \frac{-g^T g}{(R g)^T(R g)} \f] */
VectorValues optimizeGradientSearch() const;
/** Compute the gradient of the energy function, \f$ \nabla_{x=x_0} \left\Vert \Sigma^{-1} R x -
* d \right\Vert^2 \f$, centered around \f$ x = x_0 \f$. The gradient is \f$ R^T(Rx-d) \f$.
*
* @param x0 The center about which to compute the gradient
* @return The gradient as a VectorValues */
VectorValues gradient(const VectorValues& x0) const;
/** Compute the gradient of the energy function, \f$ \nabla_{x=0} \left\Vert \Sigma^{-1} R x - d
* \right\Vert^2 \f$, centered around zero. The gradient about zero is \f$ -R^T d \f$. See also
* gradient(const GaussianBayesNet&, const VectorValues&).
*
* @param [output] g A VectorValues to store the gradient, which must be preallocated, see
* allocateVectorValues */
VectorValues gradientAtZero() const;
/**
* Computes the determinant of a GassianBayesNet. A GaussianBayesNet is an upper triangular
* matrix and for an upper triangular matrix determinant is the product of the diagonal
* elements. Instead of actually multiplying we add the logarithms of the diagonal elements and
* take the exponent at the end because this is more numerically stable.
* @param bayesNet The input GaussianBayesNet
* @return The determinant */
double determinant() const;
/**
* Computes the log of the determinant of a GassianBayesNet. A GaussianBayesNet is an upper
* triangular matrix and for an upper triangular matrix determinant is the product of the
* diagonal elements.
* @param bayesNet The input GaussianBayesNet
* @return The determinant */
double logDeterminant() const;
/**
* Backsubstitute with a different RHS vector than the one stored in this BayesNet.
* gy=inv(R*inv(Sigma))*gx
*/
VectorValues backSubstitute(const VectorValues& gx) const;
/**
* Transpose backsubstitute with a different RHS vector than the one stored in this BayesNet.
* gy=inv(L)*gx by solving L*gy=gx.
* gy=inv(R'*inv(Sigma))*gx
* gz'*R'=gx', gy = gz.*sigmas
*/
VectorValues backSubstituteTranspose(const VectorValues& gx) const;
/// @}
/// @name HybridValues methods.
/// @{
using Base::evaluate; // Expose evaluate(const HybridValues&) method..
using Base::logProbability; // Expose logProbability(const HybridValues&) method..
using Base::error; // Expose error(const HybridValues&) method..
/// @}
private:
#ifdef GTSAM_ENABLE_BOOST_SERIALIZATION
/** Serialization function */
friend class boost::serialization::access;
template<class ARCHIVE>
void serialize(ARCHIVE & ar, const unsigned int /*version*/) {
ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
}
#endif
};
/// traits
template<>
struct traits<GaussianBayesNet> : public Testable<GaussianBayesNet> {
};
} //\ namespace gtsam