91 lines
3.1 KiB
Matlab
91 lines
3.1 KiB
Matlab
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
% GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
% Atlanta, Georgia 30332-0415
|
|
% All Rights Reserved
|
|
% Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
%
|
|
% See LICENSE for the license information
|
|
%
|
|
% @brief Simple robotics example using the pre-built planar SLAM domain
|
|
% @author Alex Cunningham
|
|
% @author Frank Dellaert
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
%% Assumptions
|
|
% - All values are axis aligned
|
|
% - Robot poses are facing along the X axis (horizontal, to the right in images)
|
|
% - We have bearing and range information for measurements
|
|
% - We have full odometry for measurements
|
|
% - The robot and landmarks are on a grid, moving 2 meters each step
|
|
% - Landmarks are 2 meters away from the robot trajectory
|
|
|
|
%% Create keys for variables
|
|
i1 = symbol('x',1); i2 = symbol('x',2); i3 = symbol('x',3);
|
|
j1 = symbol('l',1); j2 = symbol('l',2);
|
|
|
|
%% Create graph container and add factors to it
|
|
graph = planarSLAMGraph;
|
|
|
|
%% Add prior
|
|
priorMean = gtsamPose2(0.0, 0.0, 0.0); % prior at origin
|
|
priorNoise = gtsamSharedNoiseModel_Sigmas([0.3; 0.3; 0.1]);
|
|
graph.addPrior(i1, priorMean, priorNoise); % add directly to graph
|
|
|
|
%% Add odometry
|
|
odometry = gtsamPose2(2.0, 0.0, 0.0);
|
|
odometryNoise = gtsamSharedNoiseModel_Sigmas([0.2; 0.2; 0.1]);
|
|
graph.addOdometry(i1, i2, odometry, odometryNoise);
|
|
graph.addOdometry(i2, i3, odometry, odometryNoise);
|
|
|
|
%% Add bearing/range measurement factors
|
|
degrees = pi/180;
|
|
noiseModel = gtsamSharedNoiseModel_Sigmas([0.1; 0.2]);
|
|
graph.addBearingRange(i1, j1, gtsamRot2(45*degrees), sqrt(4+4), noiseModel);
|
|
graph.addBearingRange(i2, j1, gtsamRot2(90*degrees), 2, noiseModel);
|
|
graph.addBearingRange(i3, j2, gtsamRot2(90*degrees), 2, noiseModel);
|
|
|
|
% print
|
|
graph.print(sprintf('\nFull graph:\n'));
|
|
|
|
%% Initialize to noisy points
|
|
initialEstimate = planarSLAMValues;
|
|
initialEstimate.insertPose(i1, gtsamPose2(0.5, 0.0, 0.2));
|
|
initialEstimate.insertPose(i2, gtsamPose2(2.3, 0.1,-0.2));
|
|
initialEstimate.insertPose(i3, gtsamPose2(4.1, 0.1, 0.1));
|
|
initialEstimate.insertPoint(j1, gtsamPoint2(1.8, 2.1));
|
|
initialEstimate.insertPoint(j2, gtsamPoint2(4.1, 1.8));
|
|
|
|
initialEstimate.print(sprintf('\nInitial estimate:\n'));
|
|
|
|
%% Optimize using Levenberg-Marquardt optimization with an ordering from colamd
|
|
result = graph.optimize(initialEstimate);
|
|
result.print(sprintf('\nFinal result:\n'));
|
|
|
|
%% Plot Covariance Ellipses
|
|
cla;hold on
|
|
marginals = graph.marginals(result);
|
|
for i=1:3
|
|
key = symbol('x',i);
|
|
pose{i} = result.pose(key);
|
|
P{i}=marginals.marginalCovariance(key);
|
|
if i>1
|
|
plot([pose{i-1}.x;pose{i}.x],[pose{i-1}.y;pose{i}.y],'r-');
|
|
end
|
|
end
|
|
for i=1:3
|
|
plotPose2(pose{i},'g',P{i})
|
|
end
|
|
for j=1:2
|
|
key = symbol('l',j);
|
|
point{j} = result.point(key);
|
|
Q{j}=marginals.marginalCovariance(key);
|
|
plotPoint2(point{j},'b',Q{j})
|
|
end
|
|
plot([pose{1}.x;point{1}.x],[pose{1}.y;point{1}.y],'c-');
|
|
plot([pose{2}.x;point{1}.x],[pose{2}.y;point{1}.y],'c-');
|
|
plot([pose{3}.x;point{2}.x],[pose{3}.y;point{2}.y],'c-');
|
|
axis([-0.6 4.8 -1 1])
|
|
axis equal
|
|
view(2)
|
|
|