149 lines
6.1 KiB
C++
149 lines
6.1 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file VisualISAM2Example.cpp
|
|
* @brief A visualSLAM example for the structure-from-motion problem on a
|
|
* simulated dataset This version uses iSAM2 to solve the problem incrementally
|
|
* @author Duy-Nguyen Ta
|
|
*/
|
|
|
|
/**
|
|
* A structure-from-motion example with landmarks
|
|
* - The landmarks form a 10 meter cube
|
|
* - The robot rotates around the landmarks, always facing towards the cube
|
|
*/
|
|
|
|
// For loading the data
|
|
#include "SFMdata.h"
|
|
|
|
// Camera observations of landmarks will be stored as Point2 (x, y).
|
|
#include <gtsam/geometry/Point2.h>
|
|
|
|
// Each variable in the system (poses and landmarks) must be identified with a
|
|
// unique key. We can either use simple integer keys (1, 2, 3, ...) or symbols
|
|
// (X1, X2, L1). Here we will use Symbols
|
|
#include <gtsam/inference/Symbol.h>
|
|
|
|
// We want to use iSAM2 to solve the structure-from-motion problem
|
|
// incrementally, so include iSAM2 here
|
|
#include <gtsam/nonlinear/ISAM2.h>
|
|
|
|
// iSAM2 requires as input a set of new factors to be added stored in a factor
|
|
// graph, and initial guesses for any new variables used in the added factors
|
|
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
|
#include <gtsam/nonlinear/Values.h>
|
|
|
|
// In GTSAM, measurement functions are represented as 'factors'. Several common
|
|
// factors have been provided with the library for solving robotics/SLAM/Bundle
|
|
// Adjustment problems. Here we will use Projection factors to model the
|
|
// camera's landmark observations. Also, we will initialize the robot at some
|
|
// location using a Prior factor.
|
|
#include <gtsam/slam/PriorFactor.h>
|
|
#include <gtsam/slam/ProjectionFactor.h>
|
|
|
|
#include <vector>
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
|
|
/* ************************************************************************* */
|
|
int main(int argc, char* argv[]) {
|
|
// Define the camera calibration parameters
|
|
Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0));
|
|
|
|
// Define the camera observation noise model, 1 pixel stddev
|
|
auto measurementNoise = noiseModel::Isotropic::Sigma(2, 1.0);
|
|
|
|
// Create the set of ground-truth landmarks
|
|
vector<Point3> points = createPoints();
|
|
|
|
// Create the set of ground-truth poses
|
|
vector<Pose3> poses = createPoses();
|
|
|
|
// Create an iSAM2 object. Unlike iSAM1, which performs periodic batch steps
|
|
// to maintain proper linearization and efficient variable ordering, iSAM2
|
|
// performs partial relinearization/reordering at each step. A parameter
|
|
// structure is available that allows the user to set various properties, such
|
|
// as the relinearization threshold and type of linear solver. For this
|
|
// example, we we set the relinearization threshold small so the iSAM2 result
|
|
// will approach the batch result.
|
|
ISAM2Params parameters;
|
|
parameters.relinearizeThreshold = 0.01;
|
|
parameters.relinearizeSkip = 1;
|
|
ISAM2 isam(parameters);
|
|
|
|
// Create a Factor Graph and Values to hold the new data
|
|
NonlinearFactorGraph graph;
|
|
Values initialEstimate;
|
|
|
|
// Loop over the poses, adding the observations to iSAM incrementally
|
|
for (size_t i = 0; i < poses.size(); ++i) {
|
|
// Add factors for each landmark observation
|
|
for (size_t j = 0; j < points.size(); ++j) {
|
|
PinholeCamera<Cal3_S2> camera(poses[i], *K);
|
|
Point2 measurement = camera.project(points[j]);
|
|
graph.emplace_shared<GenericProjectionFactor<Pose3, Point3, Cal3_S2> >(
|
|
measurement, measurementNoise, Symbol('x', i), Symbol('l', j), K);
|
|
}
|
|
|
|
// Add an initial guess for the current pose
|
|
// Intentionally initialize the variables off from the ground truth
|
|
static Pose3 kDeltaPose(Rot3::Rodrigues(-0.1, 0.2, 0.25),
|
|
Point3(0.05, -0.10, 0.20));
|
|
initialEstimate.insert(Symbol('x', i), poses[i] * kDeltaPose);
|
|
|
|
// If this is the first iteration, add a prior on the first pose to set the
|
|
// coordinate frame and a prior on the first landmark to set the scale Also,
|
|
// as iSAM solves incrementally, we must wait until each is observed at
|
|
// least twice before adding it to iSAM.
|
|
if (i == 0) {
|
|
// Add a prior on pose x0, 30cm std on x,y,z and 0.1 rad on roll,pitch,yaw
|
|
static auto kPosePrior = noiseModel::Diagonal::Sigmas(
|
|
(Vector(6) << Vector3::Constant(0.1), Vector3::Constant(0.3))
|
|
.finished());
|
|
graph.emplace_shared<PriorFactor<Pose3> >(Symbol('x', 0), poses[0],
|
|
kPosePrior);
|
|
|
|
// Add a prior on landmark l0
|
|
static auto kPointPrior = noiseModel::Isotropic::Sigma(3, 0.1);
|
|
graph.emplace_shared<PriorFactor<Point3> >(Symbol('l', 0), points[0],
|
|
kPointPrior);
|
|
|
|
// Add initial guesses to all observed landmarks
|
|
// Intentionally initialize the variables off from the ground truth
|
|
static Point3 kDeltaPoint(-0.25, 0.20, 0.15);
|
|
for (size_t j = 0; j < points.size(); ++j)
|
|
initialEstimate.insert<Point3>(Symbol('l', j), points[j] + kDeltaPoint);
|
|
|
|
} else {
|
|
// Update iSAM with the new factors
|
|
isam.update(graph, initialEstimate);
|
|
// Each call to iSAM2 update(*) performs one iteration of the iterative
|
|
// nonlinear solver. If accuracy is desired at the expense of time,
|
|
// update(*) can be called additional times to perform multiple optimizer
|
|
// iterations every step.
|
|
isam.update();
|
|
Values currentEstimate = isam.calculateEstimate();
|
|
cout << "****************************************************" << endl;
|
|
cout << "Frame " << i << ": " << endl;
|
|
currentEstimate.print("Current estimate: ");
|
|
|
|
// Clear the factor graph and values for the next iteration
|
|
graph.resize(0);
|
|
initialEstimate.clear();
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
/* ************************************************************************* */
|