97 lines
3.8 KiB
C++
97 lines
3.8 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file SelfCalibrationExample.cpp
|
|
* @brief Based on VisualSLAMExample, but with unknown (yet fixed) calibration.
|
|
* @author Frank Dellaert
|
|
*/
|
|
|
|
/*
|
|
* See the detailed documentation in Visual SLAM.
|
|
* The only documentation below with deal with the self-calibration.
|
|
*/
|
|
|
|
// For loading the data
|
|
#include "SFMdata.h"
|
|
|
|
// Camera observations of landmarks (i.e. pixel coordinates) will be stored as Point2 (x, y).
|
|
#include <gtsam/geometry/Point2.h>
|
|
|
|
// Inference and optimization
|
|
#include <gtsam/inference/Symbol.h>
|
|
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
|
#include <gtsam/nonlinear/DoglegOptimizer.h>
|
|
#include <gtsam/nonlinear/Values.h>
|
|
|
|
// SFM-specific factors
|
|
#include <gtsam/slam/PriorFactor.h>
|
|
#include <gtsam/slam/GeneralSFMFactor.h> // does calibration !
|
|
|
|
// Standard headers
|
|
#include <vector>
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
|
|
/* ************************************************************************* */
|
|
int main(int argc, char* argv[]) {
|
|
|
|
// Create the set of ground-truth
|
|
vector<Point3> points = createPoints();
|
|
vector<Pose3> poses = createPoses();
|
|
|
|
// Create the factor graph
|
|
NonlinearFactorGraph graph;
|
|
|
|
// Add a prior on pose x1.
|
|
noiseModel::Diagonal::shared_ptr poseNoise = noiseModel::Diagonal::Sigmas((Vector(6) << Vector3::Constant(0.1), Vector3::Constant(0.3)).finished()); // 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
|
|
graph.emplace_shared<PriorFactor<Pose3> >(Symbol('x', 0), poses[0], poseNoise);
|
|
|
|
// Simulated measurements from each camera pose, adding them to the factor graph
|
|
Cal3_S2 K(50.0, 50.0, 0.0, 50.0, 50.0);
|
|
noiseModel::Isotropic::shared_ptr measurementNoise = noiseModel::Isotropic::Sigma(2, 1.0);
|
|
for (size_t i = 0; i < poses.size(); ++i) {
|
|
for (size_t j = 0; j < points.size(); ++j) {
|
|
PinholeCamera<Cal3_S2> camera(poses[i], K);
|
|
Point2 measurement = camera.project(points[j]);
|
|
// The only real difference with the Visual SLAM example is that here we use a
|
|
// different factor type, that also calculates the Jacobian with respect to calibration
|
|
graph.emplace_shared<GeneralSFMFactor2<Cal3_S2> >(measurement, measurementNoise, Symbol('x', i), Symbol('l', j), Symbol('K', 0));
|
|
}
|
|
}
|
|
|
|
// Add a prior on the position of the first landmark.
|
|
noiseModel::Isotropic::shared_ptr pointNoise = noiseModel::Isotropic::Sigma(3, 0.1);
|
|
graph.emplace_shared<PriorFactor<Point3> >(Symbol('l', 0), points[0], pointNoise); // add directly to graph
|
|
|
|
// Add a prior on the calibration.
|
|
noiseModel::Diagonal::shared_ptr calNoise = noiseModel::Diagonal::Sigmas((Vector(5) << 500, 500, 0.1, 100, 100).finished());
|
|
graph.emplace_shared<PriorFactor<Cal3_S2> >(Symbol('K', 0), K, calNoise);
|
|
|
|
// Create the initial estimate to the solution
|
|
// now including an estimate on the camera calibration parameters
|
|
Values initialEstimate;
|
|
initialEstimate.insert(Symbol('K', 0), Cal3_S2(60.0, 60.0, 0.0, 45.0, 45.0));
|
|
for (size_t i = 0; i < poses.size(); ++i)
|
|
initialEstimate.insert(Symbol('x', i), poses[i].compose(Pose3(Rot3::Rodrigues(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20))));
|
|
for (size_t j = 0; j < points.size(); ++j)
|
|
initialEstimate.insert<Point3>(Symbol('l', j), points[j] + Point3(-0.25, 0.20, 0.15));
|
|
|
|
/* Optimize the graph and print results */
|
|
Values result = DoglegOptimizer(graph, initialEstimate).optimize();
|
|
result.print("Final results:\n");
|
|
|
|
return 0;
|
|
}
|
|
/* ************************************************************************* */
|
|
|