227 lines
6.9 KiB
C++
227 lines
6.9 KiB
C++
/*
|
|
* @file NonlinearConstraint.h
|
|
* @brief Implements nonlinear constraints that can be linearized using
|
|
* direct linearization and solving through a quadratic merit function
|
|
* @author Alex Cunningham
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <map>
|
|
#include <boost/function.hpp>
|
|
#include "NonlinearFactor.h"
|
|
|
|
namespace gtsam {
|
|
|
|
/**
|
|
* Base class for nonlinear constraints
|
|
* This allows for both equality and inequality constraints,
|
|
* where equality constraints are active all the time (even slightly
|
|
* nonzero constraint functions will still be active - inequality
|
|
* constraints should be sure to force to actual zero)
|
|
*
|
|
* NOTE: inequality constraints removed for now
|
|
*
|
|
* Nonlinear constraints evaluate their error as a part of a quadratic
|
|
* error function: ||h(x)-z||^2 + mu * ||c(x)|| where mu is a gain
|
|
* on the constraint function that should be made high enough to be
|
|
* significant
|
|
*/
|
|
template <class Config>
|
|
class NonlinearConstraint : public NonlinearFactor<Config> {
|
|
|
|
protected:
|
|
typedef NonlinearConstraint<Config> This;
|
|
typedef NonlinearFactor<Config> Base;
|
|
double mu_; // gain for quadratic merit function
|
|
|
|
public:
|
|
|
|
/** Constructor - sets the cost function and the lagrange multipliers
|
|
* @param dim is the dimension of the factor
|
|
* @param mu is the gain used at error evaluation (forced to be positive)
|
|
*/
|
|
NonlinearConstraint(size_t dim, double mu = 1000.0):
|
|
Base(noiseModel::Constrained::All(dim)), mu_(fabs(mu)) {}
|
|
|
|
/** returns the gain mu */
|
|
double mu() const { return mu_; }
|
|
|
|
/** Print */
|
|
virtual void print(const std::string& s = "") const=0;
|
|
|
|
/** Check if two factors are equal */
|
|
virtual bool equals(const Factor<Config>& f, double tol=1e-9) const {
|
|
const This* p = dynamic_cast<const This*> (&f);
|
|
if (p == NULL) return false;
|
|
return Base::equals(*p, tol) && (mu_ == p->mu_);
|
|
}
|
|
|
|
/** error function - returns the quadratic merit function */
|
|
virtual double error(const Config& c) const {
|
|
const Vector error_vector = unwhitenedError(c);
|
|
if (active(c))
|
|
return mu_ * inner_prod(error_vector, error_vector);
|
|
else return 0.0;
|
|
}
|
|
|
|
/** Raw error vector function g(x) */
|
|
virtual Vector unwhitenedError(const Config& c) const = 0;
|
|
|
|
/**
|
|
* active set check, defines what type of constraint this is
|
|
* By default, the constraint is always active, so it is an equality constraint
|
|
* @return true if the constraint is active
|
|
*/
|
|
virtual bool active(const Config& c) const { return true; }
|
|
|
|
/**
|
|
* Linearizes around a given config
|
|
* @param config is the configuration
|
|
* @return a combined linear factor containing both the constraint and the constraint factor
|
|
*/
|
|
virtual boost::shared_ptr<GaussianFactor> linearize(const Config& c) const=0;
|
|
};
|
|
|
|
|
|
/**
|
|
* A unary constraint that defaults to an equality constraint
|
|
*/
|
|
template <class Config, class Key, class X>
|
|
class NonlinearConstraint1 : public NonlinearConstraint<Config> {
|
|
|
|
protected:
|
|
typedef NonlinearConstraint1<Config,Key,X> This;
|
|
typedef NonlinearConstraint<Config> Base;
|
|
|
|
/** key for the constrained variable */
|
|
Key key_;
|
|
|
|
public:
|
|
|
|
/**
|
|
* Basic constructor
|
|
* @param key is the identifier for the variable constrained
|
|
* @param dim is the size of the constraint (p)
|
|
* @param mu is the gain for the factor
|
|
*/
|
|
NonlinearConstraint1(const Key& key, size_t dim, double mu = 1000.0)
|
|
: Base(dim, mu), key_(key) {
|
|
this->keys_.push_back(key);
|
|
}
|
|
|
|
/* print */
|
|
void print(const std::string& s = "") const {
|
|
std::cout << "NonlinearConstraint1 " << s << std::endl;
|
|
std::cout << "key: " << (std::string) key_ << std::endl;
|
|
std::cout << "mu: " << this->mu_ << std::endl;
|
|
}
|
|
|
|
/** Check if two factors are equal. Note type is Factor and needs cast. */
|
|
virtual bool equals(const Factor<Config>& f, double tol = 1e-9) const {
|
|
const This* p = dynamic_cast<const This*> (&f);
|
|
if (p == NULL) return false;
|
|
return Base::equals(*p, tol) && (key_ == p->key_);
|
|
}
|
|
|
|
/** error function g(x) */
|
|
inline Vector unwhitenedError(const Config& x) const {
|
|
const Key& j = key_;
|
|
const X& xj = x[j];
|
|
return evaluateError(xj);
|
|
}
|
|
|
|
/** Linearize from config */
|
|
boost::shared_ptr<GaussianFactor> linearize(const Config& c) const {
|
|
if (!active(c)) {
|
|
boost::shared_ptr<GaussianFactor> factor;
|
|
return factor;
|
|
}
|
|
const Key& j = key_;
|
|
const X& x = c[j];
|
|
Matrix grad;
|
|
Vector g = -1.0 * evaluateError(x, grad);
|
|
SharedDiagonal model = noiseModel::Constrained::All(this->dim());
|
|
return GaussianFactor::shared_ptr(new GaussianFactor(this->key_, grad, g, model));
|
|
}
|
|
|
|
/** g(x) with optional derivative */
|
|
virtual Vector evaluateError(const X& x, boost::optional<Matrix&> H =
|
|
boost::none) const = 0;
|
|
};
|
|
|
|
/**
|
|
* A binary constraint with arbitrary cost and jacobian functions
|
|
*/
|
|
template <class Config, class Key1, class X1, class Key2, class X2>
|
|
class NonlinearConstraint2 : public NonlinearConstraint<Config> {
|
|
|
|
protected:
|
|
typedef NonlinearConstraint2<Config,Key1,X1,Key2,X2> This;
|
|
typedef NonlinearConstraint<Config> Base;
|
|
|
|
/** keys for the constrained variables */
|
|
Key1 key1_;
|
|
Key2 key2_;
|
|
|
|
public:
|
|
|
|
/**
|
|
* Basic constructor
|
|
* @param key1 is the identifier for the first variable constrained
|
|
* @param key2 is the identifier for the second variable constrained
|
|
* @param dim is the size of the constraint (p)
|
|
* @param mu is the gain for the factor
|
|
*/
|
|
NonlinearConstraint2(const Key1& key1, const Key2& key2, size_t dim, double mu = 1000.0) :
|
|
Base(dim, mu), key1_(key1), key2_(key2) {
|
|
this->keys_.push_back(key1);
|
|
this->keys_.push_back(key2);
|
|
}
|
|
|
|
/* print */
|
|
void print(const std::string& s = "") const {
|
|
std::cout << "NonlinearConstraint2 " << s << std::endl;
|
|
std::cout << "key1: " << (std::string) key1_ << std::endl;
|
|
std::cout << "key2: " << (std::string) key2_ << std::endl;
|
|
std::cout << "mu: " << this->mu_ << std::endl;
|
|
}
|
|
|
|
/** Check if two factors are equal. Note type is Factor and needs cast. */
|
|
virtual bool equals(const Factor<Config>& f, double tol = 1e-9) const {
|
|
const This* p = dynamic_cast<const This*> (&f);
|
|
if (p == NULL) return false;
|
|
return Base::equals(*p, tol) && (key1_ == p->key1_) && (key2_ == p->key2_);
|
|
}
|
|
|
|
/** error function g(x) */
|
|
inline Vector unwhitenedError(const Config& x) const {
|
|
const Key1& j1 = key1_;
|
|
const Key2& j2 = key2_;
|
|
const X1& xj1 = x[j1];
|
|
const X2& xj2 = x[j2];
|
|
return evaluateError(xj1, xj2);
|
|
}
|
|
|
|
/** Linearize from config */
|
|
boost::shared_ptr<GaussianFactor> linearize(const Config& c) const {
|
|
if (!active(c)) {
|
|
boost::shared_ptr<GaussianFactor> factor;
|
|
return factor;
|
|
}
|
|
const Key1& j1 = key1_; const Key2& j2 = key2_;
|
|
const X1& x1 = c[j1]; const X2& x2 = c[j2];
|
|
Matrix grad1, grad2;
|
|
Vector g = -1.0 * evaluateError(x1, x2, grad1, grad2);
|
|
SharedDiagonal model = noiseModel::Constrained::All(this->dim());
|
|
return GaussianFactor::shared_ptr(new GaussianFactor(j1, grad1, j2, grad2, g, model));
|
|
}
|
|
|
|
/** g(x) with optional derivative2 */
|
|
virtual Vector evaluateError(const X1& x1, const X2& x2,
|
|
boost::optional<Matrix&> H1 = boost::none,
|
|
boost::optional<Matrix&> H2 = boost::none) const = 0;
|
|
};
|
|
|
|
}
|