gtsam/cpp/SQPOptimizer-inl.h

82 lines
2.5 KiB
C++

/*
* @file SQPOptimizer-inl.h
* @brief Implementation of the SQP Optimizer
* @author Alex Cunningham
*/
#pragma once
#include <boost/foreach.hpp>
#include "GaussianFactorGraph.h"
#include "SQPOptimizer.h"
using namespace std;
namespace gtsam {
/* **************************************************************** */
template <class G, class C>
SQPOptimizer<G,C>::SQPOptimizer(const G& graph, const Ordering& ordering,
shared_config config)
: graph_(&graph), ordering_(&ordering), config_(config)
{
// TODO: assign a value to the lagrange config
}
/* **************************************************************** */
template <class G, class C>
SQPOptimizer<G,C>::SQPOptimizer(const G& graph, const Ordering& ordering,
shared_config config, shared_vconfig lagrange)
: graph_(&graph), ordering_(&ordering), config_(config), lagrange_config_(lagrange)
{
}
/* **************************************************************** */
template<class G, class C>
SQPOptimizer<G, C> SQPOptimizer<G, C>::iterate(Verbosity v) const {
bool verbose = v == SQPOptimizer<G, C>::FULL;
// local typedefs
typedef typename G::const_iterator const_iterator;
typedef NonlinearConstraint<C> NLConstraint;
typedef boost::shared_ptr<NLConstraint > shared_c;
// linearize the graph
GaussianFactorGraph fg;
// iterate over all factors and linearize
for (const_iterator factor = graph_->begin(); factor < graph_->end(); factor++) {
const shared_c constraint = boost::shared_dynamic_cast<NLConstraint >(*factor);
if (constraint == NULL) {
// if a regular factor, linearize using the default linearization
GaussianFactor::shared_ptr f = (*factor)->linearize(*config_);
if (verbose) f->print("Regular Factor");
fg.push_back(f);
} else {
// if a constraint, linearize using the constraint method (2 configs)
GaussianFactor::shared_ptr f, c;
boost::tie(f,c) = constraint->linearize(*config_, *lagrange_config_);
if (verbose) f->print("Constrained Factor");
if (verbose) c->print("Constraint");
fg.push_back(f);
fg.push_back(c);
}
}
if (verbose) fg.print("Before Optimization");
// optimize linear graph to get full delta config
VectorConfig delta = fg.optimize(*ordering_).scale(-1.0);
if (verbose) delta.print("Delta Config");
// update both state variables
shared_config newConfig(new C(config_->exmap(delta)));
shared_vconfig newLamConfig(new VectorConfig(lagrange_config_->exmap(delta)));
// construct a new optimizer
return SQPOptimizer<G, C>(*graph_, *ordering_, newConfig, newLamConfig);
}
}