92 lines
3.3 KiB
C++
92 lines
3.3 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file PlanarSLAMExample.cpp
|
|
* @brief Simple robotics example using the pre-built planar SLAM domain
|
|
* @author Alex Cunningham
|
|
*/
|
|
|
|
// pull in the planar SLAM domain with all typedefs and helper functions defined
|
|
#include <gtsam/slam/planarSLAM.h>
|
|
|
|
// we will use Symbol keys
|
|
#include <gtsam/nonlinear/Symbol.h>
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
|
|
/**
|
|
* Example of a simple 2D planar slam example with landmarls
|
|
* - The robot and landmarks are on a 2 meter grid
|
|
* - Robot poses are facing along the X axis (horizontal, to the right in 2D)
|
|
* - The robot moves 2 meters each step
|
|
* - We have full odometry between poses
|
|
* - We have bearing and range information for measurements
|
|
* - Landmarks are 2 meters away from the robot trajectory
|
|
*/
|
|
int main(int argc, char** argv) {
|
|
|
|
// create the graph (defined in planarSlam.h, derived from NonlinearFactorGraph)
|
|
planarSLAM::Graph graph;
|
|
|
|
// Create some keys
|
|
static Symbol i1('x',1), i2('x',2), i3('x',3);
|
|
static Symbol j1('l',1), j2('l',2);
|
|
|
|
// add a Gaussian prior on pose x_1
|
|
Pose2 priorMean(0.0, 0.0, 0.0); // prior mean is at origin
|
|
SharedDiagonal priorNoise(Vector_(3, 0.3, 0.3, 0.1)); // 30cm std on x,y, 0.1 rad on theta
|
|
graph.addPrior(i1, priorMean, priorNoise); // add directly to graph
|
|
|
|
// add two odometry factors
|
|
Pose2 odometry(2.0, 0.0, 0.0); // create a measurement for both factors (the same in this case)
|
|
SharedDiagonal odometryNoise(Vector_(3, 0.2, 0.2, 0.1)); // 20cm std on x,y, 0.1 rad on theta
|
|
graph.addOdometry(i1, i2, odometry, odometryNoise);
|
|
graph.addOdometry(i2, i3, odometry, odometryNoise);
|
|
|
|
// create a noise model for the landmark measurements
|
|
SharedDiagonal measurementNoise(Vector_(2, 0.1, 0.2)); // 0.1 rad std on bearing, 20cm on range
|
|
|
|
// create the measurement values - indices are (pose id, landmark id)
|
|
Rot2 bearing11 = Rot2::fromDegrees(45),
|
|
bearing21 = Rot2::fromDegrees(90),
|
|
bearing32 = Rot2::fromDegrees(90);
|
|
double range11 = sqrt(4+4),
|
|
range21 = 2.0,
|
|
range32 = 2.0;
|
|
|
|
// add bearing/range factors (created by "addBearingRange")
|
|
graph.addBearingRange(i1, j1, bearing11, range11, measurementNoise);
|
|
graph.addBearingRange(i2, j1, bearing21, range21, measurementNoise);
|
|
graph.addBearingRange(i3, j2, bearing32, range32, measurementNoise);
|
|
|
|
// print
|
|
graph.print("Factor graph");
|
|
|
|
// create (deliberatly inaccurate) initial estimate
|
|
planarSLAM::Values initialEstimate;
|
|
initialEstimate.insertPose(i1, Pose2(0.5, 0.0, 0.2));
|
|
initialEstimate.insertPose(i2, Pose2(2.3, 0.1,-0.2));
|
|
initialEstimate.insertPose(i3, Pose2(4.1, 0.1, 0.1));
|
|
initialEstimate.insertPoint(j1, Point2(1.8, 2.1));
|
|
initialEstimate.insertPoint(j2, Point2(4.1, 1.8));
|
|
|
|
initialEstimate.print("Initial estimate:\n ");
|
|
|
|
// optimize using Levenberg-Marquardt optimization with an ordering from colamd
|
|
planarSLAM::Values result = graph.optimize(initialEstimate);
|
|
result.print("Final result:\n ");
|
|
|
|
return 0;
|
|
}
|
|
|