gtsam/gtsam/nonlinear/DoglegOptimizerImpl.cpp

89 lines
3.1 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file DoglegOptimizerImpl.h
* @brief Nonlinear factor graph optimizer using Powell's Dogleg algorithm (detail implementation)
* @author Richard Roberts
*/
#include <cmath>
#include <gtsam/nonlinear/DoglegOptimizerImpl.h>
using namespace std;
namespace gtsam {
/* ************************************************************************* */
VectorValues DoglegOptimizerImpl::ComputeDoglegPoint(
double delta, const VectorValues& dx_u, const VectorValues& dx_n, const bool verbose) {
// Get magnitude of each update and find out which segment delta falls in
assert(delta >= 0.0);
double deltaSq = delta*delta;
double x_u_norm_sq = dx_u.squaredNorm();
double x_n_norm_sq = dx_n.squaredNorm();
if(verbose) cout << "Steepest descent magnitude " << std::sqrt(x_u_norm_sq) << ", Newton's method magnitude " << std::sqrt(x_n_norm_sq) << endl;
if(deltaSq < x_u_norm_sq) {
// Trust region is smaller than steepest descent update
VectorValues x_d = std::sqrt(deltaSq / x_u_norm_sq) * dx_u;
if(verbose) cout << "In steepest descent region with fraction " << std::sqrt(deltaSq / x_u_norm_sq) << " of steepest descent magnitude" << endl;
return x_d;
} else if(deltaSq < x_n_norm_sq) {
// Trust region boundary is between steepest descent point and Newton's method point
return ComputeBlend(delta, dx_u, dx_n, verbose);
} else {
assert(deltaSq >= x_n_norm_sq);
if(verbose) cout << "In pure Newton's method region" << endl;
// Trust region is larger than Newton's method point
return dx_n;
}
}
/* ************************************************************************* */
VectorValues DoglegOptimizerImpl::ComputeBlend(double delta, const VectorValues& x_u, const VectorValues& x_n, const bool verbose) {
// See doc/trustregion.lyx or doc/trustregion.pdf
// Compute inner products
const double un = dot(x_u, x_n);
const double uu = dot(x_u, x_u);
const double nn = dot(x_n, x_n);
// Compute quadratic formula terms
const double a = uu - 2.*un + nn;
const double b = 2. * (un - uu);
const double c = uu - delta*delta;
double sqrt_b_m4ac = std::sqrt(b*b - 4*a*c);
// Compute blending parameter
double tau1 = (-b + sqrt_b_m4ac) / (2.*a);
double tau2 = (-b - sqrt_b_m4ac) / (2.*a);
// Determine correct solution accounting for machine precision
double tau;
const double eps = std::numeric_limits<double>::epsilon();
if(-eps <= tau1 && tau1 <= 1.0 + eps) {
assert(!(-eps <= tau2 && tau2 <= 1.0 + eps));
tau = tau1;
} else {
assert(-eps <= tau2 && tau2 <= 1.0 + eps);
tau = tau2;
}
// Compute blended point
if(verbose) cout << "In blend region with fraction " << tau << " of Newton's method point" << endl;
VectorValues blend = (1. - tau) * x_u;
blend += tau * x_n;
return blend;
}
}