618 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			618 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file   SmartStereoProjectionFactor.h
 | |
|  * @brief  Smart stereo factor on StereoCameras (pose + calibration)
 | |
|  * @author Luca Carlone
 | |
|  * @author Zsolt Kira
 | |
|  * @author Frank Dellaert
 | |
|  * @author Chris Beall
 | |
|  */
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <gtsam/slam/SmartFactorBase.h>
 | |
| 
 | |
| #include <gtsam/geometry/triangulation.h>
 | |
| #include <gtsam/geometry/Pose3.h>
 | |
| #include <gtsam/geometry/StereoCamera.h>
 | |
| #include <gtsam/slam/StereoFactor.h>
 | |
| #include <gtsam/inference/Symbol.h>
 | |
| #include <gtsam/slam/dataset.h>
 | |
| 
 | |
| #include <boost/optional.hpp>
 | |
| #include <boost/make_shared.hpp>
 | |
| #include <vector>
 | |
| 
 | |
| namespace gtsam {
 | |
| 
 | |
| /// Linearization mode: what factor to linearize to
 | |
|  enum LinearizationMode {
 | |
|    HESSIAN, IMPLICIT_SCHUR, JACOBIAN_Q, JACOBIAN_SVD
 | |
|  };
 | |
| 
 | |
| /// How to manage degeneracy
 | |
| enum DegeneracyMode {
 | |
|    IGNORE_DEGENERACY, ZERO_ON_DEGENERACY, HANDLE_INFINITY
 | |
|  };
 | |
| 
 | |
|  /*
 | |
|   *  Parameters for the smart stereo projection factors
 | |
|   */
 | |
|  struct GTSAM_EXPORT SmartStereoProjectionParams {
 | |
| 
 | |
|    LinearizationMode linearizationMode; ///< How to linearize the factor
 | |
|    DegeneracyMode degeneracyMode; ///< How to linearize the factor
 | |
| 
 | |
|    /// @name Parameters governing the triangulation
 | |
|    /// @{
 | |
|    TriangulationParameters triangulation;
 | |
|    double retriangulationThreshold; ///< threshold to decide whether to re-triangulate
 | |
|    /// @}
 | |
| 
 | |
|    /// @name Parameters governing how triangulation result is treated
 | |
|    /// @{
 | |
|    bool throwCheirality; ///< If true, re-throws Cheirality exceptions (default: false)
 | |
|    bool verboseCheirality; ///< If true, prints text for Cheirality exceptions (default: false)
 | |
|    /// @}
 | |
| 
 | |
| 
 | |
|    /// Constructor
 | |
|    SmartStereoProjectionParams(LinearizationMode linMode = HESSIAN,
 | |
|        DegeneracyMode degMode = IGNORE_DEGENERACY, bool throwCheirality = false,
 | |
|        bool verboseCheirality = false) :
 | |
|        linearizationMode(linMode), degeneracyMode(degMode), retriangulationThreshold(
 | |
|            1e-5), throwCheirality(throwCheirality), verboseCheirality(
 | |
|            verboseCheirality) {
 | |
|    }
 | |
| 
 | |
|    virtual ~SmartStereoProjectionParams() {
 | |
|    }
 | |
| 
 | |
|    void print(const std::string& str) const {
 | |
|      std::cout << "linearizationMode: " << linearizationMode << "\n";
 | |
|      std::cout << "   degeneracyMode: " << degeneracyMode << "\n";
 | |
|      std::cout << triangulation << std::endl;
 | |
|    }
 | |
| 
 | |
|    LinearizationMode getLinearizationMode() const {
 | |
|      return linearizationMode;
 | |
|    }
 | |
|    DegeneracyMode getDegeneracyMode() const {
 | |
|      return degeneracyMode;
 | |
|    }
 | |
|    TriangulationParameters getTriangulationParameters() const {
 | |
|      return triangulation;
 | |
|    }
 | |
|    bool getVerboseCheirality() const {
 | |
|      return verboseCheirality;
 | |
|    }
 | |
|    bool getThrowCheirality() const {
 | |
|      return throwCheirality;
 | |
|    }
 | |
|    void setLinearizationMode(LinearizationMode linMode) {
 | |
|      linearizationMode = linMode;
 | |
|    }
 | |
|    void setDegeneracyMode(DegeneracyMode degMode) {
 | |
|      degeneracyMode = degMode;
 | |
|    }
 | |
|    void setRankTolerance(double rankTol) {
 | |
|      triangulation.rankTolerance = rankTol;
 | |
|    }
 | |
|    void setEnableEPI(bool enableEPI) {
 | |
|      triangulation.enableEPI = enableEPI;
 | |
|    }
 | |
|    void setLandmarkDistanceThreshold(double landmarkDistanceThreshold) {
 | |
|      triangulation.landmarkDistanceThreshold = landmarkDistanceThreshold;
 | |
|    }
 | |
|    void setDynamicOutlierRejectionThreshold(double dynOutRejectionThreshold) {
 | |
|      triangulation.dynamicOutlierRejectionThreshold = dynOutRejectionThreshold;
 | |
|    }
 | |
|  };
 | |
| 
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * SmartStereoProjectionFactor: triangulates point and keeps an estimate of it around.
 | |
|  * This factor operates with StereoCamera. This factor requires that values
 | |
|  * contains the involved StereoCameras. Calibration is assumed to be fixed, as this
 | |
|  * is also assumed in StereoCamera.
 | |
|  * If you'd like to store poses in values instead of cameras, use
 | |
|  * SmartStereoProjectionPoseFactor instead
 | |
| */
 | |
| class SmartStereoProjectionFactor: public SmartFactorBase<StereoCamera> {
 | |
| private:
 | |
| 
 | |
|   typedef SmartFactorBase<StereoCamera> Base;
 | |
| 
 | |
| protected:
 | |
| 
 | |
|   /// @name Parameters
 | |
|   /// @{
 | |
|   const SmartStereoProjectionParams params_;
 | |
|   /// @}
 | |
| 
 | |
|   /// @name Caching triangulation
 | |
|   /// @{
 | |
|   mutable TriangulationResult result_; ///< result from triangulateSafe
 | |
|   mutable std::vector<Pose3> cameraPosesTriangulation_; ///< current triangulation poses
 | |
|   /// @}
 | |
| 
 | |
| public:
 | |
| 
 | |
|   /// shorthand for a smart pointer to a factor
 | |
|   typedef boost::shared_ptr<SmartStereoProjectionFactor> shared_ptr;
 | |
| 
 | |
|   /// Vector of cameras
 | |
|   typedef CameraSet<StereoCamera> Cameras;
 | |
| 
 | |
|   /**
 | |
|    * Constructor
 | |
|    * @param params internal parameters of the smart factors
 | |
|    */
 | |
|   SmartStereoProjectionFactor(const SharedNoiseModel& sharedNoiseModel,
 | |
|       const SmartStereoProjectionParams& params =
 | |
|       SmartStereoProjectionParams()) :
 | |
|       Base(sharedNoiseModel), //
 | |
|       params_(params), //
 | |
|       result_(TriangulationResult::Degenerate()) {
 | |
|   }
 | |
| 
 | |
|   /** Virtual destructor */
 | |
|   virtual ~SmartStereoProjectionFactor() {
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * print
 | |
|    * @param s optional string naming the factor
 | |
|    * @param keyFormatter optional formatter useful for printing Symbols
 | |
|    */
 | |
|   void print(const std::string& s = "", const KeyFormatter& keyFormatter =
 | |
|       DefaultKeyFormatter) const {
 | |
|     std::cout << s << "SmartStereoProjectionFactor\n";
 | |
|     std::cout << "linearizationMode:\n" << params_.linearizationMode << std::endl;
 | |
|     std::cout << "triangulationParameters:\n" << params_.triangulation << std::endl;
 | |
|     std::cout << "result:\n" << result_ << std::endl;
 | |
|     Base::print("", keyFormatter);
 | |
|   }
 | |
| 
 | |
|   /// equals
 | |
|   virtual bool equals(const NonlinearFactor& p, double tol = 1e-9) const {
 | |
|     const SmartStereoProjectionFactor *e =
 | |
|         dynamic_cast<const SmartStereoProjectionFactor*>(&p);
 | |
|     return e && params_.linearizationMode == e->params_.linearizationMode
 | |
|         && Base::equals(p, tol);
 | |
|   }
 | |
| 
 | |
|   /// Check if the new linearization point_ is the same as the one used for previous triangulation
 | |
|   bool decideIfTriangulate(const Cameras& cameras) const {
 | |
|     // several calls to linearize will be done from the same linearization point_, hence it is not needed to re-triangulate
 | |
|     // Note that this is not yet "selecting linearization", that will come later, and we only check if the
 | |
|     // current linearization is the "same" (up to tolerance) w.r.t. the last time we triangulated the point_
 | |
| 
 | |
|     size_t m = cameras.size();
 | |
| 
 | |
|     bool retriangulate = false;
 | |
| 
 | |
|     // if we do not have a previous linearization point_ or the new linearization point_ includes more poses
 | |
|     if (cameraPosesTriangulation_.empty()
 | |
|         || cameras.size() != cameraPosesTriangulation_.size())
 | |
|       retriangulate = true;
 | |
| 
 | |
|     if (!retriangulate) {
 | |
|       for (size_t i = 0; i < cameras.size(); i++) {
 | |
|         if (!cameras[i].pose().equals(cameraPosesTriangulation_[i],
 | |
|             params_.retriangulationThreshold)) {
 | |
|           retriangulate = true; // at least two poses are different, hence we retriangulate
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (retriangulate) { // we store the current poses used for triangulation
 | |
|       cameraPosesTriangulation_.clear();
 | |
|       cameraPosesTriangulation_.reserve(m);
 | |
|       for (size_t i = 0; i < m; i++)
 | |
|         // cameraPosesTriangulation_[i] = cameras[i].pose();
 | |
|         cameraPosesTriangulation_.push_back(cameras[i].pose());
 | |
|     }
 | |
| 
 | |
|     return retriangulate; // if we arrive to this point_ all poses are the same and we don't need re-triangulation
 | |
|   }
 | |
| 
 | |
| //  /// triangulateSafe
 | |
| //  size_t triangulateSafe(const Values& values) const {
 | |
| //    return triangulateSafe(this->cameras(values));
 | |
| //  }
 | |
| 
 | |
|   /// triangulateSafe
 | |
|   TriangulationResult triangulateSafe(const Cameras& cameras) const {
 | |
| 
 | |
|     size_t m = cameras.size();
 | |
|     bool retriangulate = decideIfTriangulate(cameras);
 | |
| 
 | |
| //    if(!retriangulate)
 | |
| //      std::cout << "retriangulate = false" << std::endl;
 | |
| //
 | |
| //    bool retriangulate = true;
 | |
| 
 | |
|     if (retriangulate) {
 | |
| //      std::cout << "Retriangulate " << std::endl;
 | |
|       std::vector<Point3> reprojections;
 | |
|       reprojections.reserve(m);
 | |
|       for(size_t i = 0; i < m; i++) {
 | |
|         reprojections.push_back(cameras[i].backproject(measured_[i]));
 | |
|       }
 | |
| 
 | |
|       Point3 pw_sum(0,0,0);
 | |
|       BOOST_FOREACH(const Point3& pw, reprojections) {
 | |
|         pw_sum = pw_sum + pw;
 | |
|       }
 | |
|       // average reprojected landmark
 | |
|       Point3 pw_avg = pw_sum / double(m);
 | |
| 
 | |
|       double totalReprojError = 0;
 | |
| 
 | |
|       // check if it lies in front of all cameras
 | |
|       for(size_t i = 0; i < m; i++) {
 | |
|         const Pose3& pose = cameras[i].pose();
 | |
|         const Point3& pl = pose.transform_to(pw_avg);
 | |
|         if (pl.z() <= 0) {
 | |
|           result_ = TriangulationResult::BehindCamera();
 | |
|           return result_;
 | |
|         }
 | |
| 
 | |
|         // check landmark distance
 | |
|         if (params_.triangulation.landmarkDistanceThreshold > 0 &&
 | |
|             pl.norm() > params_.triangulation.landmarkDistanceThreshold) {
 | |
|           result_ = TriangulationResult::Degenerate();
 | |
|           return result_;
 | |
|         }
 | |
| 
 | |
|         if (params_.triangulation.dynamicOutlierRejectionThreshold > 0) {
 | |
|           const StereoPoint2& zi = measured_[i];
 | |
|           StereoPoint2 reprojectionError(cameras[i].project(pw_avg) - zi);
 | |
|           totalReprojError += reprojectionError.vector().norm();
 | |
|         }
 | |
|       } // for
 | |
| 
 | |
|       if (params_.triangulation.dynamicOutlierRejectionThreshold > 0
 | |
|           && totalReprojError / m > params_.triangulation.dynamicOutlierRejectionThreshold) {
 | |
|         result_ = TriangulationResult::Degenerate();
 | |
|         return result_;
 | |
|       }
 | |
| 
 | |
|       if(params_.triangulation.enableEPI) {
 | |
|         try {
 | |
|          pw_avg = triangulateNonlinear(cameras, measured_, pw_avg);
 | |
|         } catch(StereoCheiralityException& e) {
 | |
|           if(params_.verboseCheirality)
 | |
|             std::cout << "Cheirality Exception in SmartStereoProjectionFactor" << std::endl;
 | |
|           if(params_.throwCheirality)
 | |
|             throw;
 | |
|           result_ = TriangulationResult::BehindCamera();
 | |
|           return TriangulationResult::BehindCamera();
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       result_ = TriangulationResult(pw_avg);
 | |
| 
 | |
|     } // if retriangulate
 | |
|     return result_;
 | |
| 
 | |
|   }
 | |
| 
 | |
|   /// triangulate
 | |
|   bool triangulateForLinearize(const Cameras& cameras) const {
 | |
|     triangulateSafe(cameras); // imperative, might reset result_
 | |
|     return bool(result_);
 | |
|   }
 | |
| 
 | |
|   /// linearize returns a Hessianfactor that is an approximation of error(p)
 | |
|   boost::shared_ptr<RegularHessianFactor<Base::Dim> > createHessianFactor(
 | |
|       const Cameras& cameras, const double lambda = 0.0,  bool diagonalDamping =
 | |
|           false) const {
 | |
| 
 | |
|     size_t numKeys = this->keys_.size();
 | |
|     // Create structures for Hessian Factors
 | |
|     std::vector<Key> js;
 | |
|     std::vector<Matrix> Gs(numKeys * (numKeys + 1) / 2);
 | |
|     std::vector<Vector> gs(numKeys);
 | |
| 
 | |
|     if (this->measured_.size() != cameras.size()) {
 | |
|       std::cout
 | |
|           << "SmartStereoProjectionHessianFactor: this->measured_.size() inconsistent with input"
 | |
|           << std::endl;
 | |
|       exit(1);
 | |
|     }
 | |
| 
 | |
|     triangulateSafe(cameras);
 | |
| 
 | |
|     if (params_.degeneracyMode == ZERO_ON_DEGENERACY && !result_) {
 | |
|       // failed: return"empty" Hessian
 | |
|       BOOST_FOREACH(Matrix& m, Gs)
 | |
|         m = Matrix::Zero(Base::Dim, Base::Dim);
 | |
|       BOOST_FOREACH(Vector& v, gs)
 | |
|         v = Vector::Zero(Base::Dim);
 | |
|       return boost::make_shared<RegularHessianFactor<Base::Dim> >(this->keys_,
 | |
|           Gs, gs, 0.0);
 | |
|     }
 | |
| 
 | |
|     // Jacobian could be 3D Point3 OR 2D Unit3, difference is E.cols().
 | |
|     std::vector<Base::MatrixZD> Fblocks;
 | |
|     Matrix F, E;
 | |
|     Vector b;
 | |
|     computeJacobiansWithTriangulatedPoint(Fblocks, E, b, cameras);
 | |
| 
 | |
|     // Whiten using noise model
 | |
|     Base::whitenJacobians(Fblocks, E, b);
 | |
| 
 | |
|     // build augmented hessian
 | |
|     SymmetricBlockMatrix augmentedHessian = //
 | |
|         Cameras::SchurComplement(Fblocks, E, b, lambda, diagonalDamping);
 | |
| 
 | |
|     return boost::make_shared<RegularHessianFactor<Base::Dim> >(this->keys_,
 | |
|         augmentedHessian);
 | |
|   }
 | |
| 
 | |
|   // create factor
 | |
| //  boost::shared_ptr<RegularImplicitSchurFactor<StereoCamera> > createRegularImplicitSchurFactor(
 | |
| //      const Cameras& cameras, double lambda) const {
 | |
| //    if (triangulateForLinearize(cameras))
 | |
| //      return Base::createRegularImplicitSchurFactor(cameras, *result_, lambda);
 | |
| //    else
 | |
| //      // failed: return empty
 | |
| //      return boost::shared_ptr<RegularImplicitSchurFactor<StereoCamera> >();
 | |
| //  }
 | |
| //
 | |
| //  /// create factor
 | |
| //  boost::shared_ptr<JacobianFactorQ<Base::Dim, Base::ZDim> > createJacobianQFactor(
 | |
| //      const Cameras& cameras, double lambda) const {
 | |
| //    if (triangulateForLinearize(cameras))
 | |
| //      return Base::createJacobianQFactor(cameras, *result_, lambda);
 | |
| //    else
 | |
| //      // failed: return empty
 | |
| //      return boost::make_shared<JacobianFactorQ<Base::Dim, Base::ZDim> >(this->keys_);
 | |
| //  }
 | |
| //
 | |
| //  /// Create a factor, takes values
 | |
| //  boost::shared_ptr<JacobianFactorQ<Base::Dim, Base::ZDim> > createJacobianQFactor(
 | |
| //      const Values& values, double lambda) const {
 | |
| //    return createJacobianQFactor(this->cameras(values), lambda);
 | |
| //  }
 | |
| 
 | |
|   /// different (faster) way to compute Jacobian factor
 | |
|   boost::shared_ptr<JacobianFactor> createJacobianSVDFactor(
 | |
|       const Cameras& cameras, double lambda) const {
 | |
|     if (triangulateForLinearize(cameras))
 | |
|       return Base::createJacobianSVDFactor(cameras, *result_, lambda);
 | |
|     else
 | |
|       return boost::make_shared<JacobianFactorSVD<Base::Dim, ZDim> >(this->keys_);
 | |
|   }
 | |
| 
 | |
| //  /// linearize to a Hessianfactor
 | |
| //  virtual boost::shared_ptr<RegularHessianFactor<Base::Dim> > linearizeToHessian(
 | |
| //      const Values& values, double lambda = 0.0) const {
 | |
| //    return createHessianFactor(this->cameras(values), lambda);
 | |
| //  }
 | |
| 
 | |
| //  /// linearize to an Implicit Schur factor
 | |
| //  virtual boost::shared_ptr<RegularImplicitSchurFactor<StereoCamera> > linearizeToImplicit(
 | |
| //      const Values& values, double lambda = 0.0) const {
 | |
| //    return createRegularImplicitSchurFactor(this->cameras(values), lambda);
 | |
| //  }
 | |
| //
 | |
| //  /// linearize to a JacobianfactorQ
 | |
| //  virtual boost::shared_ptr<JacobianFactorQ<Base::Dim, Base::ZDim> > linearizeToJacobian(
 | |
| //      const Values& values, double lambda = 0.0) const {
 | |
| //    return createJacobianQFactor(this->cameras(values), lambda);
 | |
| //  }
 | |
| 
 | |
|   /**
 | |
|    * Linearize to Gaussian Factor
 | |
|    * @param values Values structure which must contain camera poses for this factor
 | |
|    * @return a Gaussian factor
 | |
|    */
 | |
|   boost::shared_ptr<GaussianFactor> linearizeDamped(const Cameras& cameras,
 | |
|       const double lambda = 0.0) const {
 | |
|     // depending on flag set on construction we may linearize to different linear factors
 | |
|     switch (params_.linearizationMode) {
 | |
|     case HESSIAN:
 | |
|       return createHessianFactor(cameras, lambda);
 | |
| //    case IMPLICIT_SCHUR:
 | |
| //      return createRegularImplicitSchurFactor(cameras, lambda);
 | |
|     case JACOBIAN_SVD:
 | |
|       return createJacobianSVDFactor(cameras, lambda);
 | |
| //    case JACOBIAN_Q:
 | |
| //      return createJacobianQFactor(cameras, lambda);
 | |
|     default:
 | |
|       throw std::runtime_error("SmartStereoFactorlinearize: unknown mode");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Linearize to Gaussian Factor
 | |
|    * @param values Values structure which must contain camera poses for this factor
 | |
|    * @return a Gaussian factor
 | |
|    */
 | |
|   boost::shared_ptr<GaussianFactor> linearizeDamped(const Values& values,
 | |
|       const double lambda = 0.0) const {
 | |
|     // depending on flag set on construction we may linearize to different linear factors
 | |
|     Cameras cameras = this->cameras(values);
 | |
|     return linearizeDamped(cameras, lambda);
 | |
|   }
 | |
| 
 | |
|   /// linearize
 | |
|   virtual boost::shared_ptr<GaussianFactor> linearize(
 | |
|       const Values& values) const {
 | |
|     return linearizeDamped(values);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Triangulate and compute derivative of error with respect to point
 | |
|    * @return whether triangulation worked
 | |
|    */
 | |
|   bool triangulateAndComputeE(Matrix& E, const Cameras& cameras) const {
 | |
|     bool nonDegenerate = triangulateForLinearize(cameras);
 | |
|     if (nonDegenerate)
 | |
|       cameras.project2(*result_, boost::none, E);
 | |
|     return nonDegenerate;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Triangulate and compute derivative of error with respect to point
 | |
|    * @return whether triangulation worked
 | |
|    */
 | |
|   bool triangulateAndComputeE(Matrix& E, const Values& values) const {
 | |
|     Cameras cameras = this->cameras(values);
 | |
|     return triangulateAndComputeE(E, cameras);
 | |
|   }
 | |
| 
 | |
| 
 | |
|   /// Compute F, E only (called below in both vanilla and SVD versions)
 | |
|   /// Assumes the point has been computed
 | |
|   /// Note E can be 2m*3 or 2m*2, in case point is degenerate
 | |
|   void computeJacobiansWithTriangulatedPoint(
 | |
|       std::vector<Base::MatrixZD>& Fblocks, Matrix& E, Vector& b,
 | |
|       const Cameras& cameras) const {
 | |
| 
 | |
|     if (!result_) {
 | |
|       throw ("computeJacobiansWithTriangulatedPoint");
 | |
| //      // Handle degeneracy
 | |
| //      // TODO check flag whether we should do this
 | |
| //      Unit3 backProjected; /* = cameras[0].backprojectPointAtInfinity(
 | |
| //          this->measured_.at(0)); */
 | |
| //
 | |
| //      Base::computeJacobians(Fblocks, E, b, cameras, backProjected);
 | |
|     } else {
 | |
|       // valid result: just return Base version
 | |
|       Base::computeJacobians(Fblocks, E, b, cameras, *result_);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// Version that takes values, and creates the point
 | |
|   bool triangulateAndComputeJacobians(
 | |
|       std::vector<Base::MatrixZD>& Fblocks, Matrix& E, Vector& b,
 | |
|       const Values& values) const {
 | |
|     Cameras cameras = this->cameras(values);
 | |
|     bool nonDegenerate = triangulateForLinearize(cameras);
 | |
|     if (nonDegenerate)
 | |
|       computeJacobiansWithTriangulatedPoint(Fblocks, E, b, cameras);
 | |
|     return nonDegenerate;
 | |
|   }
 | |
| 
 | |
|   /// takes values
 | |
|   bool triangulateAndComputeJacobiansSVD(
 | |
|       std::vector<Base::MatrixZD>& Fblocks, Matrix& Enull, Vector& b,
 | |
|       const Values& values) const {
 | |
|     Cameras cameras = this->cameras(values);
 | |
|     bool nonDegenerate = triangulateForLinearize(cameras);
 | |
|     if (nonDegenerate)
 | |
|       Base::computeJacobiansSVD(Fblocks, Enull, b, cameras, *result_);
 | |
|     return nonDegenerate;
 | |
|   }
 | |
| 
 | |
|   /// Calculate vector of re-projection errors, before applying noise model
 | |
|   Vector reprojectionErrorAfterTriangulation(const Values& values) const {
 | |
|     Cameras cameras = this->cameras(values);
 | |
|     bool nonDegenerate = triangulateForLinearize(cameras);
 | |
|     if (nonDegenerate)
 | |
|       return Base::unwhitenedError(cameras, *result_);
 | |
|     else
 | |
|       return Vector::Zero(cameras.size() * Base::ZDim);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Calculate the error of the factor.
 | |
|    * This is the log-likelihood, e.g. \f$ 0.5(h(x)-z)^2/\sigma^2 \f$ in case of Gaussian.
 | |
|    * In this class, we take the raw prediction error \f$ h(x)-z \f$, ask the noise model
 | |
|    * to transform it to \f$ (h(x)-z)^2/\sigma^2 \f$, and then multiply by 0.5.
 | |
|    */
 | |
|   double totalReprojectionError(const Cameras& cameras,
 | |
|       boost::optional<Point3> externalPoint = boost::none) const {
 | |
| 
 | |
|     if (externalPoint)
 | |
|       result_ = TriangulationResult(*externalPoint);
 | |
|     else
 | |
|       result_ = triangulateSafe(cameras);
 | |
| 
 | |
|     if (result_)
 | |
|       // All good, just use version in base class
 | |
|       return Base::totalReprojectionError(cameras, *result_);
 | |
|     else if (params_.degeneracyMode == HANDLE_INFINITY) {
 | |
|       throw(std::runtime_error("Backproject at infinity not implemented for SmartStereo."));
 | |
| //      // Otherwise, manage the exceptions with rotation-only factors
 | |
| //      const StereoPoint2& z0 = this->measured_.at(0);
 | |
| //      Unit3 backprojected; //= cameras.front().backprojectPointAtInfinity(z0);
 | |
| //
 | |
| //      return Base::totalReprojectionError(cameras, backprojected);
 | |
|     } else {
 | |
|       // if we don't want to manage the exceptions we discard the factor
 | |
|       return 0.0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// Calculate total reprojection error
 | |
|   virtual double error(const Values& values) const {
 | |
|     if (this->active(values)) {
 | |
|       return totalReprojectionError(Base::cameras(values));
 | |
|     } else { // else of active flag
 | |
|       return 0.0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /** return the landmark */
 | |
|     TriangulationResult point() const {
 | |
|       return result_;
 | |
|     }
 | |
| 
 | |
|     /** COMPUTE the landmark */
 | |
|     TriangulationResult point(const Values& values) const {
 | |
|       Cameras cameras = this->cameras(values);
 | |
|       return triangulateSafe(cameras);
 | |
|     }
 | |
| 
 | |
|     /// Is result valid?
 | |
|     bool isValid() const {
 | |
|       return bool(result_);
 | |
|     }
 | |
| 
 | |
|     /** return the degenerate state */
 | |
|     bool isDegenerate() const {
 | |
|       return result_.degenerate();
 | |
|     }
 | |
| 
 | |
|     /** return the cheirality status flag */
 | |
|     bool isPointBehindCamera() const {
 | |
|       return result_.behindCamera();
 | |
|     }
 | |
| 
 | |
| private:
 | |
| 
 | |
|   /// Serialization function
 | |
|   friend class boost::serialization::access;
 | |
|   template<class ARCHIVE>
 | |
|   void serialize(ARCHIVE & ar, const unsigned int /*version*/) {
 | |
|     ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
 | |
|     ar & BOOST_SERIALIZATION_NVP(params_.throwCheirality);
 | |
|     ar & BOOST_SERIALIZATION_NVP(params_.verboseCheirality);
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// traits
 | |
| template<>
 | |
| struct traits<SmartStereoProjectionFactor > : public Testable<
 | |
|     SmartStereoProjectionFactor> {
 | |
| };
 | |
| 
 | |
| } // \ namespace gtsam
 |