gtsam/gtsam/slam/SmartProjectionCameraFactor.h

169 lines
5.6 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file SmartProjectionCameraFactor.h
* @brief Produces an Hessian factors on CAMERAS (Pose3+CALIBRATION) from monocular measurements of a landmark
* @author Luca Carlone
* @author Chris Beall
* @author Zsolt Kira
*/
#pragma once
#include <gtsam/slam/SmartProjectionFactor.h>
namespace gtsam {
/**
* @addtogroup SLAM
*/
template<class CALIBRATION>
class SmartProjectionCameraFactor: public SmartProjectionFactor<
PinholeCamera<CALIBRATION> > {
private:
typedef PinholeCamera<CALIBRATION> Camera;
typedef SmartProjectionFactor<Camera> Base;
typedef SmartProjectionCameraFactor<CALIBRATION> This;
protected:
static const int Dim = traits<Camera>::dimension; ///< CAMERA dimension
bool isImplicit_;
public:
/// shorthand for a smart pointer to a factor
typedef boost::shared_ptr<This> shared_ptr;
// A set of cameras
typedef CameraSet<Camera> Cameras;
/**
* Constructor
* @param rankTol tolerance used to check if point triangulation is degenerate
* @param linThreshold threshold on relative pose changes used to decide whether to relinearize (selective relinearization)
* @param manageDegeneracy is true, in presence of degenerate triangulation, the factor is converted to a rotation-only constraint,
* otherwise the factor is simply neglected
* @param enableEPI if set to true linear triangulation is refined with embedded LM iterations
* @param isImplicit if set to true linearize the factor to an implicit Schur factor
*/
SmartProjectionCameraFactor(const double rankTol = 1,
const double linThreshold = -1, const bool manageDegeneracy = false,
const bool enableEPI = false, const bool isImplicit = false) :
Base(rankTol, linThreshold, manageDegeneracy, enableEPI), isImplicit_(
isImplicit) {
if (linThreshold != -1) {
std::cout << "SmartProjectionCameraFactor: linThreshold " << linThreshold
<< std::endl;
}
}
/** Virtual destructor */
virtual ~SmartProjectionCameraFactor() {
}
/**
* print
* @param s optional string naming the factor
* @param keyFormatter optional formatter useful for printing Symbols
*/
void print(const std::string& s = "", const KeyFormatter& keyFormatter =
DefaultKeyFormatter) const {
std::cout << s << "SmartProjectionCameraFactor, z = \n ";
Base::print("", keyFormatter);
}
/// equals
virtual bool equals(const NonlinearFactor& p, double tol = 1e-9) const {
const This *e = dynamic_cast<const This*>(&p);
return e && Base::equals(p, tol);
}
/// get the dimension of the factor (number of rows on linearization)
virtual size_t dim() const {
return Dim * this->keys_.size(); // 6 for the pose and 3 for the calibration
}
/// Collect all cameras: important that in key order
Cameras cameras(const Values& values) const {
Cameras cameras;
BOOST_FOREACH(const Key& k, this->keys_)
cameras.push_back(values.at<Camera>(k));
return cameras;
}
/// linearize and adds damping on the points
boost::shared_ptr<GaussianFactor> linearizeDamped(const Values& values,
const double lambda=0.0) const {
if (!isImplicit_)
return Base::createHessianFactor(cameras(values), lambda);
else
return Base::createRegularImplicitSchurFactor(cameras(values));
}
/// linearize returns a Hessianfactor that is an approximation of error(p)
virtual boost::shared_ptr<RegularHessianFactor<Dim> > linearizeToHessian(
const Values& values, double lambda=0.0) const {
return Base::createHessianFactor(cameras(values),lambda);
}
/// linearize returns a Hessianfactor that is an approximation of error(p)
virtual boost::shared_ptr<RegularImplicitSchurFactor<Dim> > linearizeToImplicit(
const Values& values, double lambda=0.0) const {
return Base::createRegularImplicitSchurFactor(cameras(values),lambda);
}
/// linearize returns a Jacobianfactor that is an approximation of error(p)
virtual boost::shared_ptr<JacobianFactorQ<Dim, 2> > linearizeToJacobian(
const Values& values, double lambda=0.0) const {
return Base::createJacobianQFactor(cameras(values),lambda);
}
/// linearize returns a Hessianfactor that is an approximation of error(p)
virtual boost::shared_ptr<GaussianFactor> linearizeWithLambda(
const Values& values, double lambda) const {
if (isImplicit_)
return linearizeToImplicit(values,lambda);
else
return linearizeToHessian(values,lambda);
}
/// linearize returns a Hessianfactor that is an approximation of error(p)
virtual boost::shared_ptr<GaussianFactor> linearize(
const Values& values) const {
return linearizeWithLambda(values,0.0);
}
/// Calculare total reprojection error
virtual double error(const Values& values) const {
if (this->active(values)) {
return Base::totalReprojectionError(cameras(values));
} else { // else of active flag
return 0.0;
}
}
private:
/// Serialization function
friend class boost::serialization::access;
template<class ARCHIVE>
void serialize(ARCHIVE & ar, const unsigned int version) {
ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
}
};
} // \ namespace gtsam