578 lines
18 KiB
C++
578 lines
18 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------1------------------------------------------- */
|
|
|
|
/**
|
|
* @file testExpression.cpp
|
|
* @date September 18, 2014
|
|
* @author Frank Dellaert
|
|
* @author Paul Furgale
|
|
* @brief unit tests for Block Automatic Differentiation
|
|
*/
|
|
|
|
#include <gtsam/geometry/PinholeCamera.h>
|
|
#include <gtsam/geometry/Pose3.h>
|
|
#include <gtsam/geometry/Cal3_S2.h>
|
|
#include <gtsam_unstable/nonlinear/Expression.h>
|
|
#include <gtsam/base/Testable.h>
|
|
#include <gtsam/base/LieScalar.h>
|
|
|
|
#include "ceres/ceres.h"
|
|
#include "ceres/rotation.h"
|
|
|
|
#undef CHECK
|
|
#include <CppUnitLite/TestHarness.h>
|
|
|
|
#include <boost/assign/list_of.hpp>
|
|
using boost::assign::list_of;
|
|
using boost::assign::map_list_of;
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
|
|
/* ************************************************************************* */
|
|
template<class CAL>
|
|
Point2 uncalibrate(const CAL& K, const Point2& p,
|
|
boost::optional<Matrix25&> Dcal, boost::optional<Matrix2&> Dp) {
|
|
return K.uncalibrate(p, Dcal, Dp);
|
|
}
|
|
|
|
static const Rot3 someR = Rot3::RzRyRx(1, 2, 3);
|
|
|
|
/* ************************************************************************* */
|
|
// Constant
|
|
TEST(Expression, constant) {
|
|
Expression<Rot3> R(someR);
|
|
Values values;
|
|
JacobianMap actualMap;
|
|
Rot3 actual = R.value(values, actualMap);
|
|
EXPECT(assert_equal(someR, actual));
|
|
JacobianMap expected;
|
|
EXPECT(actualMap == expected);
|
|
EXPECT_LONGS_EQUAL(0, R.traceSize())
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Leaf
|
|
TEST(Expression, Leaf) {
|
|
Expression<Rot3> R(100);
|
|
Values values;
|
|
values.insert(100, someR);
|
|
|
|
JacobianMap expected;
|
|
Matrix H = eye(3);
|
|
expected.insert(make_pair(100, H.block(0, 0, 3, 3)));
|
|
|
|
JacobianMap actualMap2;
|
|
actualMap2.insert(make_pair(100, H.block(0, 0, 3, 3)));
|
|
Rot3 actual2 = R.reverse(values, actualMap2);
|
|
EXPECT(assert_equal(someR, actual2));
|
|
EXPECT(actualMap2 == expected);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Many Leaves
|
|
TEST(Expression, Leaves) {
|
|
Values values;
|
|
Point3 somePoint(1, 2, 3);
|
|
values.insert(Symbol('p', 10), somePoint);
|
|
std::vector<Expression<Point3> > points = createUnknowns<Point3>(10, 'p', 1);
|
|
EXPECT(assert_equal(somePoint,points.back().value(values)));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
|
|
//TEST(Expression, NullaryMethod) {
|
|
// Expression<Point3> p(67);
|
|
// Expression<LieScalar> norm(p, &Point3::norm);
|
|
// Values values;
|
|
// values.insert(67,Point3(3,4,5));
|
|
// Augmented<LieScalar> a = norm.augmented(values);
|
|
// EXPECT(a.value() == sqrt(50));
|
|
// JacobianMap expected;
|
|
// expected[67] = (Matrix(1,3) << 3/sqrt(50),4/sqrt(50),5/sqrt(50));
|
|
// EXPECT(assert_equal(expected.at(67),a.jacobians().at(67)));
|
|
//}
|
|
/* ************************************************************************* */
|
|
// Binary(Leaf,Leaf)
|
|
namespace binary {
|
|
// Create leaves
|
|
Expression<Pose3> x(1);
|
|
Expression<Point3> p(2);
|
|
Expression<Point3> p_cam(x, &Pose3::transform_to, p);
|
|
}
|
|
/* ************************************************************************* */
|
|
// keys
|
|
TEST(Expression, BinaryKeys) {
|
|
set<Key> expected = list_of(1)(2);
|
|
EXPECT(expected == binary::p_cam.keys());
|
|
}
|
|
/* ************************************************************************* */
|
|
// dimensions
|
|
TEST(Expression, BinaryDimensions) {
|
|
map<Key, size_t> actual, expected = map_list_of<Key, size_t>(1, 6)(2, 3);
|
|
binary::p_cam.dims(actual);
|
|
EXPECT(actual==expected);
|
|
}
|
|
/* ************************************************************************* */
|
|
// dimensions
|
|
TEST(Expression, BinaryTraceSize) {
|
|
typedef BinaryExpression<Point3, Pose3, Point3> Binary;
|
|
size_t expectedTraceSize = sizeof(Binary::Record);
|
|
EXPECT_LONGS_EQUAL(expectedTraceSize, binary::p_cam.traceSize());
|
|
}
|
|
/* ************************************************************************* */
|
|
// Binary(Leaf,Unary(Binary(Leaf,Leaf)))
|
|
namespace tree {
|
|
using namespace binary;
|
|
// Create leaves
|
|
Expression<Cal3_S2> K(3);
|
|
|
|
// Create expression tree
|
|
Expression<Point2> projection(PinholeCamera<Cal3_S2>::project_to_camera, p_cam);
|
|
Expression<Point2> uv_hat(uncalibrate<Cal3_S2>, K, projection);
|
|
}
|
|
/* ************************************************************************* */
|
|
// keys
|
|
TEST(Expression, TreeKeys) {
|
|
set<Key> expected = list_of(1)(2)(3);
|
|
EXPECT(expected == tree::uv_hat.keys());
|
|
}
|
|
/* ************************************************************************* */
|
|
// dimensions
|
|
TEST(Expression, TreeDimensions) {
|
|
map<Key, size_t> actual, expected = map_list_of<Key, size_t>(1, 6)(2, 3)(3,
|
|
5);
|
|
tree::uv_hat.dims(actual);
|
|
EXPECT(actual==expected);
|
|
}
|
|
/* ************************************************************************* */
|
|
// TraceSize
|
|
TEST(Expression, TreeTraceSize) {
|
|
typedef UnaryExpression<Point2, Point3> Unary;
|
|
typedef BinaryExpression<Point3, Pose3, Point3> Binary1;
|
|
typedef BinaryExpression<Point2, Point2, Cal3_S2> Binary2;
|
|
size_t expectedTraceSize = sizeof(Unary::Record) + sizeof(Binary1::Record)
|
|
+ sizeof(Binary2::Record);
|
|
EXPECT_LONGS_EQUAL(expectedTraceSize, tree::uv_hat.traceSize());
|
|
}
|
|
/* ************************************************************************* */
|
|
|
|
TEST(Expression, compose1) {
|
|
|
|
// Create expression
|
|
Expression<Rot3> R1(1), R2(2);
|
|
Expression<Rot3> R3 = R1 * R2;
|
|
|
|
// Check keys
|
|
set<Key> expected = list_of(1)(2);
|
|
EXPECT(expected == R3.keys());
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Test compose with arguments referring to the same rotation
|
|
TEST(Expression, compose2) {
|
|
|
|
// Create expression
|
|
Expression<Rot3> R1(1), R2(1);
|
|
Expression<Rot3> R3 = R1 * R2;
|
|
|
|
// Check keys
|
|
set<Key> expected = list_of(1);
|
|
EXPECT(expected == R3.keys());
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Test compose with one arguments referring to constant rotation
|
|
TEST(Expression, compose3) {
|
|
|
|
// Create expression
|
|
Expression<Rot3> R1(Rot3::identity()), R2(3);
|
|
Expression<Rot3> R3 = R1 * R2;
|
|
|
|
// Check keys
|
|
set<Key> expected = list_of(3);
|
|
EXPECT(expected == R3.keys());
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Test with ternary function
|
|
Rot3 composeThree(const Rot3& R1, const Rot3& R2, const Rot3& R3,
|
|
boost::optional<Matrix3&> H1, boost::optional<Matrix3&> H2,
|
|
boost::optional<Matrix3&> H3) {
|
|
// return dummy derivatives (not correct, but that's ok for testing here)
|
|
if (H1)
|
|
*H1 = eye(3);
|
|
if (H2)
|
|
*H2 = eye(3);
|
|
if (H3)
|
|
*H3 = eye(3);
|
|
return R1 * (R2 * R3);
|
|
}
|
|
|
|
TEST(Expression, ternary) {
|
|
|
|
// Create expression
|
|
Expression<Rot3> A(1), B(2), C(3);
|
|
Expression<Rot3> ABC(composeThree, A, B, C);
|
|
|
|
// Check keys
|
|
set<Key> expected = list_of(1)(2)(3);
|
|
EXPECT(expected == ABC.keys());
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Some Ceres Snippets copied for testing
|
|
// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
|
|
template<typename T> inline T &RowMajorAccess(T *base, int rows, int cols,
|
|
int i, int j) {
|
|
return base[cols * i + j];
|
|
}
|
|
|
|
inline double RandDouble() {
|
|
double r = static_cast<double>(rand());
|
|
return r / RAND_MAX;
|
|
}
|
|
|
|
// A structure for projecting a 3x4 camera matrix and a
|
|
// homogeneous 3D point, to a 2D inhomogeneous point.
|
|
struct Projective {
|
|
// Function that takes P and X as separate vectors:
|
|
// P, X -> x
|
|
template<typename A>
|
|
bool operator()(A const P[12], A const X[4], A x[2]) const {
|
|
A PX[3];
|
|
for (int i = 0; i < 3; ++i) {
|
|
PX[i] = RowMajorAccess(P, 3, 4, i, 0) * X[0]
|
|
+ RowMajorAccess(P, 3, 4, i, 1) * X[1]
|
|
+ RowMajorAccess(P, 3, 4, i, 2) * X[2]
|
|
+ RowMajorAccess(P, 3, 4, i, 3) * X[3];
|
|
}
|
|
if (PX[2] != 0.0) {
|
|
x[0] = PX[0] / PX[2];
|
|
x[1] = PX[1] / PX[2];
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Adapt to eigen types
|
|
Vector2 operator()(const MatrixRowMajor& P, const Vector4& X) const {
|
|
Vector2 x;
|
|
if (operator()(P.data(), X.data(), x.data()))
|
|
return x;
|
|
else
|
|
throw std::runtime_error("Projective fail");
|
|
}
|
|
};
|
|
|
|
// Templated pinhole camera model for used with Ceres. The camera is
|
|
// parameterized using 9 parameters: 3 for rotation, 3 for translation, 1 for
|
|
// focal length and 2 for radial distortion. The principal point is not modeled
|
|
// (i.e. it is assumed be located at the image center).
|
|
struct SnavelyReprojectionError {
|
|
|
|
template<typename T>
|
|
bool operator()(const T* const camera, const T* const point,
|
|
T* predicted) const {
|
|
// camera[0,1,2] are the angle-axis rotation.
|
|
T p[3];
|
|
ceres::AngleAxisRotatePoint(camera, point, p);
|
|
|
|
// camera[3,4,5] are the translation.
|
|
p[0] += camera[3];
|
|
p[1] += camera[4];
|
|
p[2] += camera[5];
|
|
|
|
// Compute the center of distortion. The sign change comes from
|
|
// the camera model that Noah Snavely's Bundler assumes, whereby
|
|
// the camera coordinate system has a negative z axis.
|
|
T xp = -p[0] / p[2];
|
|
T yp = -p[1] / p[2];
|
|
|
|
// Apply second and fourth order radial distortion.
|
|
const T& l1 = camera[7];
|
|
const T& l2 = camera[8];
|
|
T r2 = xp * xp + yp * yp;
|
|
T distortion = T(1.0) + r2 * (l1 + l2 * r2);
|
|
|
|
// Compute final projected point position.
|
|
const T& focal = camera[6];
|
|
predicted[0] = focal * distortion * xp;
|
|
predicted[1] = focal * distortion * yp;
|
|
|
|
return true;
|
|
}
|
|
|
|
// Adapt to GTSAM types
|
|
Vector2 operator()(const Vector9& P, const Vector3& X) const {
|
|
Vector2 x;
|
|
if (operator()(P.data(), X.data(), x.data()))
|
|
return x;
|
|
else
|
|
throw std::runtime_error("Snavely fail");
|
|
}
|
|
|
|
};
|
|
|
|
/* ************************************************************************* */
|
|
|
|
/**
|
|
* A manifold defines a space in which there is a notion of a linear tangent space
|
|
* that can be centered around a given point on the manifold. These nonlinear
|
|
* spaces may have such properties as wrapping around (as is the case with rotations),
|
|
* which might make linear operations on parameters not return a viable element of
|
|
* the manifold.
|
|
*
|
|
* We perform optimization by computing a linear delta in the tangent space of the
|
|
* current estimate, and then apply this change using a retraction operation, which
|
|
* maps the change in tangent space back to the manifold itself.
|
|
*
|
|
* There may be multiple possible retractions for a given manifold, which can be chosen
|
|
* between depending on the computational complexity. The important criteria for
|
|
* the creation for the retract and localCoordinates functions is that they be
|
|
* inverse operations.
|
|
*
|
|
*/
|
|
|
|
// Traits, same style as Boost.TypeTraits
|
|
// All meta-functions below ever only declare a single type
|
|
// or a type/value/value_type
|
|
// is manifold, by default this is false
|
|
template<typename T>
|
|
struct is_manifold: public std::false_type {
|
|
};
|
|
|
|
// dimension, can return Eigen::Dynamic (-1) if not known at compile time
|
|
template<typename T>
|
|
struct dimension: public std::integral_constant<int, T::dimension> {
|
|
};
|
|
|
|
// TangentVector is Eigen::Matrix type in tangent space, can be Dynamic...
|
|
template<typename T>
|
|
struct TangentVector {
|
|
BOOST_STATIC_ASSERT(is_manifold<T>::value);
|
|
typedef Eigen::Matrix<double, dimension<T>::value, 1> type;
|
|
};
|
|
|
|
// default localCoordinates
|
|
template<typename T>
|
|
struct LocalCoordinates {
|
|
typename TangentVector<T>::type operator()(const T& t1, const T& t2) {
|
|
return t1.localCoordinates(t2);
|
|
}
|
|
};
|
|
|
|
// default retract
|
|
template<typename T>
|
|
struct Retract {
|
|
T operator()(const T& t, const typename TangentVector<T>::type& d) {
|
|
return t.retract(d);
|
|
}
|
|
};
|
|
|
|
// Fixed size Eigen::Matrix type
|
|
|
|
template<int M, int N, int Options>
|
|
struct is_manifold<Eigen::Matrix<double, M, N, Options> > : public true_type {
|
|
};
|
|
|
|
template<int M, int N, int Options>
|
|
struct dimension<Eigen::Matrix<double, M, N, Options> > : public integral_constant<
|
|
size_t, M * N> {
|
|
BOOST_STATIC_ASSERT(M!=Eigen::Dynamic && N!=Eigen::Dynamic);
|
|
};
|
|
|
|
template<int M, int N, int Options>
|
|
struct LocalCoordinates<Eigen::Matrix<double, M, N, Options> > {
|
|
typedef Eigen::Matrix<double, M, N, Options> T;
|
|
typedef typename TangentVector<T>::type result_type;
|
|
result_type operator()(const T& t1, const T& t2) {
|
|
T diff = t2 - t1;
|
|
return result_type(Eigen::Map<result_type>(diff.data()));
|
|
}
|
|
};
|
|
|
|
template<int M, int N, int Options>
|
|
struct Retract<Eigen::Matrix<double, M, N, Options> > {
|
|
typedef Eigen::Matrix<double, M, N, Options> T;
|
|
T operator()(const T& t, const typename TangentVector<T>::type& d) {
|
|
return t + Eigen::Map<const T>(d.data());
|
|
}
|
|
};
|
|
|
|
// Point2
|
|
|
|
template<>
|
|
struct is_manifold<Point2> : public true_type {
|
|
};
|
|
|
|
template<>
|
|
struct dimension<Point2> : public integral_constant<size_t, 2> {
|
|
};
|
|
|
|
// is_manifold
|
|
TEST(Expression, is_manifold) {
|
|
EXPECT(!is_manifold<int>::value);
|
|
EXPECT(is_manifold<Point2>::value);
|
|
EXPECT(is_manifold<Matrix24>::value);
|
|
}
|
|
|
|
// dimension
|
|
TEST(Expression, dimension) {
|
|
EXPECT_LONGS_EQUAL(2, dimension<Point2>::value);
|
|
EXPECT_LONGS_EQUAL(8, dimension<Matrix24>::value);
|
|
}
|
|
|
|
// localCoordinates
|
|
TEST(Expression, localCoordinates) {
|
|
EXPECT(LocalCoordinates<Point2>()(Point2(0,0),Point2(1,0))==Vector2(1,0));
|
|
EXPECT(LocalCoordinates<Vector2>()(Vector2(0,0),Vector2(1,0))==Vector2(1,0));
|
|
}
|
|
|
|
// retract
|
|
TEST(Expression, retract) {
|
|
EXPECT(Retract<Point2>()(Point2(0,0),Vector2(1,0))==Point2(1,0));
|
|
EXPECT(Retract<Vector2>()(Vector2(0,0),Vector2(1,0))==Vector2(1,0));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// New-style numerical derivatives using manifold_traits
|
|
template<typename Y, typename X>
|
|
Matrix numericalDerivative(boost::function<Y(const X&)> h, const X& x,
|
|
double delta = 1e-5) {
|
|
|
|
BOOST_STATIC_ASSERT(is_manifold<Y>::value);
|
|
static const size_t M = dimension<Y>::value;
|
|
typedef typename TangentVector<Y>::type TangentY;
|
|
LocalCoordinates<Y> localCoordinates;
|
|
|
|
BOOST_STATIC_ASSERT(is_manifold<X>::value);
|
|
static const size_t N = dimension<X>::value;
|
|
typedef typename TangentVector<X>::type TangentX;
|
|
Retract<X> retract;
|
|
|
|
// get value at x
|
|
Y hx = h(x);
|
|
|
|
// Prepare a tangent vector to perturb x with
|
|
TangentX d;
|
|
d.setZero();
|
|
|
|
// Fill in Jacobian H
|
|
Matrix H = zeros(M, N);
|
|
double factor = 1.0 / (2.0 * delta);
|
|
for (size_t j = 0; j < N; j++) {
|
|
d(j) = delta;
|
|
TangentY hxplus = localCoordinates(hx, h(retract(x, d)));
|
|
d(j) = -delta;
|
|
TangentY hxmin = localCoordinates(hx, h(retract(x, d)));
|
|
H.block<M, 1>(0, j) << (hxplus - hxmin) * factor;
|
|
d(j) = 0;
|
|
}
|
|
return H;
|
|
}
|
|
|
|
template<typename Y, typename X1, typename X2>
|
|
Matrix numericalDerivative21(boost::function<Y(const X1&, const X2&)> h,
|
|
const X1& x1, const X2& x2, double delta = 1e-5) {
|
|
return numericalDerivative<Y, X1>(boost::bind(h, _1, x2), x1, delta);
|
|
}
|
|
|
|
template<typename Y, typename X1, typename X2>
|
|
Matrix numericalDerivative22(boost::function<Y(const X1&, const X2&)> h,
|
|
const X1& x1, const X2& x2, double delta = 1e-5) {
|
|
return numericalDerivative<Y, X2>(boost::bind(h, x1, _1), x2, delta);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Test Ceres AutoDiff
|
|
TEST(Expression, AutoDiff) {
|
|
using ceres::internal::AutoDiff;
|
|
|
|
// Instantiate function
|
|
Projective projective;
|
|
|
|
// Make arguments
|
|
typedef Eigen::Matrix<double, 3, 4, Eigen::RowMajor> M;
|
|
M P;
|
|
P << 1, 0, 0, 0, 0, 1, 0, 5, 0, 0, 1, 0;
|
|
Vector4 X(10, 0, 5, 1);
|
|
|
|
// Apply the mapping, to get image point b_x.
|
|
Vector expected = Vector2(2, 1);
|
|
Vector2 actual = projective(P, X);
|
|
EXPECT(assert_equal(expected,actual,1e-9));
|
|
|
|
// Get expected derivatives
|
|
Matrix E1 = numericalDerivative21<Vector2, M, Vector4>(Projective(), P, X);
|
|
Matrix E2 = numericalDerivative22<Vector2, M, Vector4>(Projective(), P, X);
|
|
|
|
// Get derivatives with AutoDiff
|
|
Vector2 actual2;
|
|
MatrixRowMajor H1(2, 12), H2(2, 4);
|
|
double *parameters[] = { P.data(), X.data() };
|
|
double *jacobians[] = { H1.data(), H2.data() };
|
|
CHECK(
|
|
(AutoDiff<Projective, double, 12, 4>::Differentiate( projective, parameters, 2, actual2.data(), jacobians)));
|
|
EXPECT(assert_equal(E1,H1,1e-8));
|
|
EXPECT(assert_equal(E2,H2,1e-8));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Test Ceres AutoDiff on Snavely
|
|
TEST(Expression, AutoDiff2) {
|
|
using ceres::internal::AutoDiff;
|
|
|
|
// Instantiate function
|
|
SnavelyReprojectionError snavely;
|
|
|
|
// Make arguments
|
|
Vector9 P; // zero rotation, (0,5,0) translation, focal length 1
|
|
P << 0, 0, 0, 0, 5, 0, 1, 0, 0;
|
|
Vector3 X(10, 0, -5); // negative Z-axis convention of Snavely!
|
|
|
|
// Apply the mapping, to get image point b_x.
|
|
Vector expected = Vector2(2, 1);
|
|
Vector2 actual = snavely(P, X);
|
|
EXPECT(assert_equal(expected,actual,1e-9));
|
|
|
|
// Get expected derivatives
|
|
Matrix E1 = numericalDerivative21<Vector2, Vector9, Vector3>(
|
|
SnavelyReprojectionError(), P, X);
|
|
Matrix E2 = numericalDerivative22<Vector2, Vector9, Vector3>(
|
|
SnavelyReprojectionError(), P, X);
|
|
|
|
// Get derivatives with AutoDiff
|
|
Vector2 actual2;
|
|
MatrixRowMajor H1(2, 9), H2(2, 3);
|
|
double *parameters[] = { P.data(), X.data() };
|
|
double *jacobians[] = { H1.data(), H2.data() };
|
|
CHECK(
|
|
(AutoDiff<SnavelyReprojectionError, double, 9, 3>::Differentiate( snavely, parameters, 2, actual2.data(), jacobians)));
|
|
EXPECT(assert_equal(E1,H1,1e-8));
|
|
EXPECT(assert_equal(E2,H2,1e-8));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// keys
|
|
TEST(Expression, SnavelyKeys) {
|
|
// Expression<Vector2> expression(1);
|
|
// set<Key> expected = list_of(1)(2);
|
|
// EXPECT(expected == expression.keys());
|
|
}
|
|
/* ************************************************************************* */
|
|
int main() {
|
|
TestResult tr;
|
|
return TestRegistry::runAllTests(tr);
|
|
}
|
|
/* ************************************************************************* */
|
|
|