gtsam/gtsam/navigation/MagPoseFactor.h

147 lines
5.7 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
#pragma once
#include <gtsam/geometry/concepts.h>
#include <gtsam/nonlinear/NonlinearFactor.h>
namespace gtsam {
/**
* Factor to estimate rotation of a Pose2 or Pose3 given a magnetometer reading.
* This version uses the measurement model bM = scale * bRn * direction + bias,
* where bRn is the rotation of the body in the nav frame, and scale, direction,
* and bias are assumed to be known. If the factor is constructed with a
* body_P_sensor, then the magnetometer measurements and bias should be
* expressed in the sensor frame.
*/
template <class POSE>
class MagPoseFactor: public NoiseModelFactorN<POSE> {
private:
using This = MagPoseFactor<POSE>;
using Base = NoiseModelFactorN<POSE>;
using Point = typename POSE::Translation; ///< Could be a Vector2 or Vector3 depending on POSE.
using Rot = typename POSE::Rotation;
const Point measured_; ///< The measured magnetometer data in the body frame.
const Point nM_; ///< Local magnetic field (mag output units) in the nav frame.
const Point bias_; ///< The bias vector (mag output units) in the body frame.
boost::optional<POSE> body_P_sensor_; ///< The pose of the sensor in the body frame.
static const int MeasDim = Point::RowsAtCompileTime;
static const int PoseDim = traits<POSE>::dimension;
static const int RotDim = traits<Rot>::dimension;
/// Shorthand for a smart pointer to a factor.
using shared_ptr = boost::shared_ptr<MagPoseFactor<POSE>>;
/// Concept check by type.
GTSAM_CONCEPT_TESTABLE_TYPE(POSE)
GTSAM_CONCEPT_POSE_TYPE(POSE)
public:
// Provide access to the Matrix& version of evaluateError:
using Base::evaluateError;
~MagPoseFactor() override {}
/// Default constructor - only use for serialization.
MagPoseFactor() {}
/**
* Construct the factor.
* @param pose_key of the unknown pose nPb in the factor graph
* @param measured magnetometer reading, a Point2 or Point3
* @param scale by which a unit vector is scaled to yield a magnetometer reading
* @param direction of the local magnetic field, see e.g. http://www.ngdc.noaa.gov/geomag-web/#igrfwmm
* @param bias of the magnetometer, modeled as purely additive (after scaling)
* @param model of the additive Gaussian noise that is assumed
* @param body_P_sensor an optional transform of the magnetometer in the body frame
*/
MagPoseFactor(Key pose_key,
const Point& measured,
double scale,
const Point& direction,
const Point& bias,
const SharedNoiseModel& model,
const boost::optional<POSE>& body_P_sensor)
: Base(model, pose_key),
measured_(body_P_sensor ? body_P_sensor->rotation() * measured : measured),
nM_(scale * direction.normalized()),
bias_(body_P_sensor ? body_P_sensor->rotation() * bias : bias),
body_P_sensor_(body_P_sensor) {}
/// @return a deep copy of this factor.
NonlinearFactor::shared_ptr clone() const override {
return boost::static_pointer_cast<NonlinearFactor>(
NonlinearFactor::shared_ptr(new This(*this)));
}
/// Implement functions needed for Testable.
// Print out the factor.
void print(const std::string& s = "", const KeyFormatter& keyFormatter = DefaultKeyFormatter) const override {
Base::print(s, keyFormatter);
gtsam::print(Vector(nM_), "local field (nM): ");
gtsam::print(Vector(measured_), "measured field (bM): ");
gtsam::print(Vector(bias_), "magnetometer bias: ");
}
/// Equals function.
bool equals(const NonlinearFactor& expected, double tol=1e-9) const override {
const This *e = dynamic_cast<const This*> (&expected);
return e != nullptr && Base::equals(*e, tol) &&
gtsam::equal_with_abs_tol(this->measured_, e->measured_, tol) &&
gtsam::equal_with_abs_tol(this->nM_, e->nM_, tol) &&
gtsam::equal_with_abs_tol(this->bias_, e->bias_, tol);
}
/// Implement functions needed to derive from Factor.
/**
* Return the factor's error h(x) - z, and the optional Jacobian. Note that
* the measurement error is expressed in the body frame.
*/
Vector evaluateError(const POSE& nPb, OptionalMatrixType H) const override {
// Predict the measured magnetic field h(x) in the *body* frame.
// If body_P_sensor was given, bias_ will have been rotated into the body frame.
Matrix H_rot = Matrix::Zero(MeasDim, RotDim);
const Point hx = nPb.rotation().unrotate(nM_, H_rot, OptionalNone) + bias_;
if (H) {
// Fill in the relevant part of the Jacobian (just rotation columns).
*H = Matrix::Zero(MeasDim, PoseDim);
const size_t rot_col0 = nPb.rotationInterval().first;
(*H).block(0, rot_col0, MeasDim, RotDim) = H_rot;
}
return (hx - measured_);
}
private:
/// Serialization function.
friend class boost::serialization::access;
template<class ARCHIVE>
void serialize(ARCHIVE & ar, const unsigned int /*version*/) {
// NoiseModelFactor1 instead of NoiseModelFactorN for backward compatibility
ar & boost::serialization::make_nvp("NoiseModelFactor1",
boost::serialization::base_object<Base>(*this));
ar & BOOST_SERIALIZATION_NVP(measured_);
ar & BOOST_SERIALIZATION_NVP(nM_);
ar & BOOST_SERIALIZATION_NVP(bias_);
ar & BOOST_SERIALIZATION_NVP(body_P_sensor_);
}
}; // \class MagPoseFactor
} /// namespace gtsam