gtsam/gtsam/geometry/Point2.h

105 lines
3.8 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Point2.h
* @brief 2D Point
* @author Frank Dellaert
*/
#pragma once
#include <gtsam/base/VectorSpace.h>
#include <boost/serialization/nvp.hpp>
namespace gtsam {
/// As of GTSAM 4, in order to make GTSAM more lean,
/// it is now possible to just typedef Point2 to Vector2
typedef Vector2 Point2;
// Convenience typedef
using Point2Pair = std::pair<Point2, Point2>;
GTSAM_EXPORT std::ostream &operator<<(std::ostream &os, const gtsam::Point2Pair &p);
using Point2Pairs = std::vector<Point2Pair>;
/// Distance of the point from the origin, with Jacobian
GTSAM_EXPORT double norm2(const Point2& p, OptionalJacobian<1, 2> H = boost::none);
/// distance between two points
GTSAM_EXPORT double distance2(const Point2& p1, const Point2& q,
OptionalJacobian<1, 2> H1 = boost::none,
OptionalJacobian<1, 2> H2 = boost::none);
// For MATLAB wrapper
typedef std::vector<Point2, Eigen::aligned_allocator<Point2> > Point2Vector;
/// multiply with scalar
inline Point2 operator*(double s, const Point2& p) {
return Point2(s * p.x(), s * p.y());
}
/*
* @brief Circle-circle intersection, given normalized radii.
* Calculate f and h, respectively the parallel and perpendicular distance of
* the intersections of two circles along and from the line connecting the centers.
* Both are dimensionless fractions of the distance d between the circle centers.
* If the circles do not intersect or they are identical, returns boost::none.
* If one solution (touching circles, as determined by tol), h will be exactly zero.
* h is a good measure for how accurate the intersection will be, as when circles touch
* or nearly touch, the intersection is ill-defined with noisy radius measurements.
* @param R_d : R/d, ratio of radius of first circle to distance between centers
* @param r_d : r/d, ratio of radius of second circle to distance between centers
* @param tol: absolute tolerance below which we consider touching circles
* @return optional Point2 with f and h, boost::none if no solution.
*/
GTSAM_EXPORT boost::optional<Point2> circleCircleIntersection(double R_d, double r_d, double tol = 1e-9);
/*
* @brief Circle-circle intersection, from the normalized radii solution.
* @param c1 center of first circle
* @param c2 center of second circle
* @return list of solutions (0,1, or 2). Identical circles will return empty list, as well.
*/
GTSAM_EXPORT std::list<Point2> circleCircleIntersection(Point2 c1, Point2 c2, boost::optional<Point2> fh);
/// Calculate the two means of a set of Point2 pairs
GTSAM_EXPORT Point2Pair means(const std::vector<Point2Pair> &abPointPairs);
/**
* @brief Intersect 2 circles
* @param c1 center of first circle
* @param r1 radius of first circle
* @param c2 center of second circle
* @param r2 radius of second circle
* @param tol: absolute tolerance below which we consider touching circles
* @return list of solutions (0,1, or 2). Identical circles will return empty list, as well.
*/
GTSAM_EXPORT std::list<Point2> circleCircleIntersection(Point2 c1, double r1,
Point2 c2, double r2, double tol = 1e-9);
template <typename A1, typename A2>
struct Range;
template <>
struct Range<Point2, Point2> {
typedef double result_type;
double operator()(const Point2& p, const Point2& q,
OptionalJacobian<1, 2> H1 = boost::none,
OptionalJacobian<1, 2> H2 = boost::none) {
return distance2(p, q, H1, H2);
}
};
} // \ namespace gtsam