gtsam/gtsam/nonlinear/tests/testFunctorizedFactor.cpp

186 lines
5.7 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------1-------------------------------------------
*/
/**
* @file testFunctorizedFactor.cpp
* @date May 31, 2020
* @author Varun Agrawal
* @brief unit tests for FunctorizedFactor class
*/
#include <CppUnitLite/TestHarness.h>
#include <gtsam/base/Testable.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/nonlinear/FunctorizedFactor.h>
#include <gtsam/nonlinear/factorTesting.h>
using namespace std;
using namespace gtsam;
Key key = Symbol('X', 0);
auto model = noiseModel::Isotropic::Sigma(9, 1);
/// Functor that takes a matrix and multiplies every element by m
class MultiplyFunctor {
double m_; ///< simple multiplier
public:
MultiplyFunctor(double m) : m_(m) {}
Matrix operator()(const Matrix &X,
OptionalJacobian<-1, -1> H = boost::none) const {
if (H) *H = m_ * Matrix::Identity(X.rows() * X.cols(), X.rows() * X.cols());
return m_ * X;
}
};
/* ************************************************************************* */
// Test identity operation for FunctorizedFactor.
TEST(FunctorizedFactor, Identity) {
Matrix X = Matrix::Identity(3, 3), measurement = Matrix::Identity(3, 3);
double multiplier = 1.0;
auto functor = MultiplyFunctor(multiplier);
auto factor = MakeFunctorizedFactor<Matrix>(key, measurement, model, functor);
Vector error = factor.evaluateError(X);
EXPECT(assert_equal(Vector::Zero(9), error, 1e-9));
}
/* ************************************************************************* */
// Test FunctorizedFactor with multiplier value of 2.
TEST(FunctorizedFactor, Multiply2) {
double multiplier = 2.0;
Matrix X = Matrix::Identity(3, 3);
Matrix measurement = multiplier * Matrix::Identity(3, 3);
auto factor = MakeFunctorizedFactor<Matrix>(key, measurement, model,
MultiplyFunctor(multiplier));
Vector error = factor.evaluateError(X);
EXPECT(assert_equal(Vector::Zero(9), error, 1e-9));
}
/* ************************************************************************* */
// Test equality function for FunctorizedFactor.
TEST(FunctorizedFactor, Equality) {
Matrix measurement = Matrix::Identity(2, 2);
double multiplier = 2.0;
auto factor1 = MakeFunctorizedFactor<Matrix>(key, measurement, model,
MultiplyFunctor(multiplier));
auto factor2 = MakeFunctorizedFactor<Matrix>(key, measurement, model,
MultiplyFunctor(multiplier));
EXPECT(factor1.equals(factor2));
}
/* *************************************************************************** */
// Test Jacobians of FunctorizedFactor.
TEST(FunctorizedFactor, Jacobians) {
Matrix X = Matrix::Identity(3, 3);
Matrix actualH;
double multiplier = 2.0;
auto factor =
MakeFunctorizedFactor<Matrix>(key, X, model, MultiplyFunctor(multiplier));
Values values;
values.insert<Matrix>(key, X);
// Check Jacobians
EXPECT_CORRECT_FACTOR_JACOBIANS(factor, values, 1e-7, 1e-5);
}
/* ************************************************************************* */
// Test print result of FunctorizedFactor.
TEST(FunctorizedFactor, Print) {
Matrix X = Matrix::Identity(2, 2);
double multiplier = 2.0;
auto factor =
MakeFunctorizedFactor<Matrix>(key, X, model, MultiplyFunctor(multiplier));
// redirect output to buffer so we can compare
stringstream buffer;
streambuf *old = cout.rdbuf(buffer.rdbuf());
factor.print();
// get output string and reset stdout
string actual = buffer.str();
cout.rdbuf(old);
string expected =
" keys = { X0 }\n"
" noise model: unit (9) \n"
"FunctorizedFactor(X0)\n"
" measurement: [\n"
" 1, 0;\n"
" 0, 1\n"
"]\n"
" noise model sigmas: 1 1 1 1 1 1 1 1 1\n";
CHECK_EQUAL(expected, actual);
}
/* ************************************************************************* */
// Test FunctorizedFactor using a std::function type.
TEST(FunctorizedFactor, Functional) {
double multiplier = 2.0;
Matrix X = Matrix::Identity(3, 3);
Matrix measurement = multiplier * Matrix::Identity(3, 3);
std::function<Matrix(Matrix, boost::optional<Matrix &>)> functional =
MultiplyFunctor(multiplier);
auto factor =
MakeFunctorizedFactor<Matrix>(key, measurement, model, functional);
Vector error = factor.evaluateError(X);
EXPECT(assert_equal(Vector::Zero(9), error, 1e-9));
}
/* ************************************************************************* */
// Test FunctorizedFactor with a lambda function.
TEST(FunctorizedFactor, Lambda) {
double multiplier = 2.0;
Matrix X = Matrix::Identity(3, 3);
Matrix measurement = multiplier * Matrix::Identity(3, 3);
auto lambda = [multiplier](const Matrix &X,
OptionalJacobian<-1, -1> H = boost::none) {
if (H)
*H = multiplier *
Matrix::Identity(X.rows() * X.cols(), X.rows() * X.cols());
return multiplier * X;
};
// FunctorizedFactor<Matrix> factor(key, measurement, model, lambda);
auto factor = MakeFunctorizedFactor<Matrix>(key, measurement, model, lambda);
Vector error = factor.evaluateError(X);
EXPECT(assert_equal(Vector::Zero(9), error, 1e-9));
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */