gtsam/cpp/ISAM2-inl.h

404 lines
15 KiB
C++

/**
* @file ISAM2-inl.h
* @brief Incremental update functionality (ISAM2) for BayesTree, with fluid relinearization.
* @author Michael Kaess
*/
#include <boost/foreach.hpp>
#include <boost/assign/std/list.hpp> // for operator +=
using namespace boost::assign;
#include <set>
#include "NonlinearFactorGraph-inl.h"
#include "GaussianFactor.h"
#include "VectorConfig.h"
#include "Conditional.h"
#include "BayesTree-inl.h"
#include "ISAM2.h"
namespace gtsam {
using namespace std;
// from inference-inl.h - need to additionally return the newly created factor for caching
boost::shared_ptr<GaussianConditional> _eliminateOne(FactorGraph<GaussianFactor>& graph, CachedFactors& cached, const Symbol& key) {
// combine the factors of all nodes connected to the variable to be eliminated
// if no factors are connected to key, returns an empty factor
boost::shared_ptr<GaussianFactor> joint_factor = removeAndCombineFactors(graph,key);
// eliminate that joint factor
boost::shared_ptr<GaussianFactor> factor;
boost::shared_ptr<GaussianConditional> conditional;
boost::tie(conditional, factor) = joint_factor->eliminate(key);
// ADDED: remember the intermediate result to be able to later restart computation in the middle
cached[key] = factor;
// add new factor on separator back into the graph
if (!factor->empty()) graph.push_back(factor);
// return the conditional Gaussian
return conditional;
}
// from GaussianFactorGraph.cpp, see _eliminateOne above
GaussianBayesNet _eliminate(FactorGraph<GaussianFactor>& graph, CachedFactors& cached, const Ordering& ordering) {
GaussianBayesNet chordalBayesNet; // empty
BOOST_FOREACH(const Symbol& key, ordering) {
GaussianConditional::shared_ptr cg = _eliminateOne(graph, cached, key);
chordalBayesNet.push_back(cg);
}
return chordalBayesNet;
}
GaussianBayesNet _eliminate_const(const FactorGraph<GaussianFactor>& graph, CachedFactors& cached, const Ordering& ordering) {
// make a copy that can be modified locally
FactorGraph<GaussianFactor> graph_ignored = graph;
return _eliminate(graph_ignored, cached, ordering);
}
/** Create an empty Bayes Tree */
template<class Conditional, class Config>
ISAM2<Conditional, Config>::ISAM2() : BayesTree<Conditional>() {}
/** Create a Bayes Tree from a nonlinear factor graph */
template<class Conditional, class Config>
ISAM2<Conditional, Config>::ISAM2(const NonlinearFactorGraph<Config>& nlfg, const Ordering& ordering, const Config& config)
: BayesTree<Conditional>(nlfg.linearize(config)->eliminate(ordering)), theta_(config), thetaFuture_(config), nonlinearFactors_(nlfg) {
// todo: repeats calculation above, just to set "cached"
// De-referencing shared pointer can be quite expensive because creates temporary
_eliminate_const(*nlfg.linearize(config), cached_, ordering);
}
/* ************************************************************************* */
template<class Conditional, class Config>
list<size_t> ISAM2<Conditional, Config>::getAffectedFactors(const list<Symbol>& keys) const {
FactorGraph<NonlinearFactor<Config> > allAffected;
list<size_t> indices;
BOOST_FOREACH(const Symbol& key, keys) {
const list<size_t> l = nonlinearFactors_.factors(key);
indices.insert(indices.begin(), l.begin(), l.end());
}
indices.sort();
indices.unique();
return indices;
}
/* ************************************************************************* */
// retrieve all factors that ONLY contain the affected variables
// (note that the remaining stuff is summarized in the cached factors)
template<class Conditional, class Config>
boost::shared_ptr<GaussianFactorGraph> ISAM2<Conditional, Config>::relinearizeAffectedFactors
(const set<Symbol>& affectedKeys) const {
list<Symbol> affectedKeysList; // todo: shouldn't have to convert back to list...
affectedKeysList.insert(affectedKeysList.begin(), affectedKeys.begin(), affectedKeys.end());
list<size_t> candidates = getAffectedFactors(affectedKeysList);
NonlinearFactorGraph<Config> nonlinearAffectedFactors;
BOOST_FOREACH(size_t idx, candidates) {
bool inside = true;
BOOST_FOREACH(const Symbol& key, nonlinearFactors_[idx]->keys()) {
if (affectedKeys.find(key) == affectedKeys.end()) {
inside = false;
break;
}
}
if (inside)
nonlinearAffectedFactors.push_back(nonlinearFactors_[idx]);
}
// TODO: temporary might be expensive, return shared pointer ?
return nonlinearAffectedFactors.linearize(theta_);
}
/* ************************************************************************* */
// find intermediate (linearized) factors from cache that are passed into the affected area
template<class Conditional, class Config>
FactorGraph<GaussianFactor> ISAM2<Conditional, Config>::getCachedBoundaryFactors(Cliques& orphans) {
FactorGraph<GaussianFactor> cachedBoundary;
BOOST_FOREACH(sharedClique orphan, orphans) {
// find the last variable that was eliminated
const Symbol& key = orphan->ordering().back();
// retrieve the cached factor and add to boundary
cachedBoundary.push_back(cached_[key]);
}
return cachedBoundary;
}
/* ************************************************************************* */
// todo: will be obsolete soon
template<class Conditional, class Config>
void ISAM2<Conditional, Config>::update_internal(const NonlinearFactorGraph<Config>& newFactors,
const Config& newTheta, Cliques& orphans, double wildfire_threshold, double relinearize_threshold, bool relinearize) {
// marked_ = nonlinearFactors_.keys(); // debug only ////////////
// only relinearize if requested in previous step AND necessary (ie. at least one variable changes)
relinearize = true; // todo - switched off
bool relinFromLast = true; //marked_.size() > 0;
//// 1 - relinearize selected variables
if (relinFromLast) {
theta_ = expmap(theta_, deltaMarked_);
}
//// 2 - Add new factors (for later relinearization)
nonlinearFactors_.push_back(newFactors);
//// 3 - Initialize new variables
theta_.insert(newTheta);
thetaFuture_.insert(newTheta);
//// 4 - Mark affected variables as invalid
// todo - not in lyx yet: relin requires more than just removing the cliques corresponding to the variables!!!
// It's about factors!!!
if (relinFromLast) {
// mark variables that have to be removed as invalid (removeFATtop)
// basically calculate all the keys contained in the factors that contain any of the keys...
// the goal is to relinearize all variables directly affected by new factors
list<size_t> allAffected = getAffectedFactors(marked_);
set<Symbol> accumulate;
BOOST_FOREACH(int idx, allAffected) {
list<Symbol> tmp = nonlinearFactors_[idx]->keys();
accumulate.insert(tmp.begin(), tmp.end());
}
marked_.clear();
marked_.insert(marked_.begin(), accumulate.begin(), accumulate.end());
} // else: marked_ is empty anyways
// also mark variables that are affected by new factors as invalid
const list<Symbol> newKeys = newFactors.keys();
marked_.insert(marked_.begin(), newKeys.begin(), newKeys.end());
// eliminate duplicates
marked_.sort();
marked_.unique();
//// 5 - removeTop invalidate all cliques involving marked variables
// remove affected factors
BayesNet<GaussianConditional> affectedBayesNet;
this->removeTop(marked_, affectedBayesNet, orphans);
//// 6 - find factors connected to affected variables
//// 7 - linearize
boost::shared_ptr<GaussianFactorGraph> factors;
if (relinFromLast) {
// ordering provides all keys in conditionals, there cannot be others because path to root included
set<Symbol> affectedKeys;
list<Symbol> tmp = affectedBayesNet.ordering();
affectedKeys.insert(tmp.begin(), tmp.end());
// todo - remerge in keys of new factors
affectedKeys.insert(newKeys.begin(), newKeys.end());
// Save number of affected variables
lastAffectedVariableCount = affectedKeys.size();
factors = relinearizeAffectedFactors(affectedKeys);
// Save number of affected factors
lastAffectedFactorCount = factors->size();
// add the cached intermediate results from the boundary of the orphans ...
FactorGraph<GaussianFactor> cachedBoundary = getCachedBoundaryFactors(orphans);
factors->push_back(cachedBoundary);
} else {
// reuse the old factors
FactorGraph<GaussianFactor> tmp(affectedBayesNet);
factors.reset(new GaussianFactorGraph);
factors->push_back(tmp);
factors->push_back(*newFactors.linearize(theta_)); // avoid temporary ?
}
//// 8 - eliminate and add orphans back in
// create an ordering for the new and contaminated factors
// newKeys are passed in: those variables will be forced to the end in the ordering
set<Symbol> newKeysSet;
newKeysSet.insert(newKeys.begin(), newKeys.end());
Ordering ordering = factors->getConstrainedOrdering(newKeysSet);
// eliminate into a Bayes net
BayesNet<Conditional> bayesNet = _eliminate(*factors, cached_, ordering);
// Create Index from ordering
IndexTable<Symbol> index(ordering);
// insert conditionals back in, straight into the topless bayesTree
typename BayesNet<Conditional>::const_reverse_iterator rit;
for ( rit=bayesNet.rbegin(); rit != bayesNet.rend(); ++rit )
this->insert(*rit, index);
// Save number of affectedCliques
lastAffectedCliqueCount = this->size();
// add orphans to the bottom of the new tree
BOOST_FOREACH(sharedClique orphan, orphans) {
Symbol parentRepresentative = findParentClique(orphan->separator_, index);
sharedClique parent = (*this)[parentRepresentative];
parent->children_ += orphan;
orphan->parent_ = parent; // set new parent!
}
//// 9 - update solution
delta_ = optimize2(*this, wildfire_threshold);
//// 10 - mark variables, if significant change
marked_.clear();
deltaMarked_ = VectorConfig(); // clear
if (relinearize) { // decides about next step!!!
for (VectorConfig::const_iterator it = delta_.begin(); it!=delta_.end(); it++) {
Symbol key = it->first;
Vector v = it->second;
if (max(abs(v)) >= relinearize_threshold) {
marked_.push_back(key);
deltaMarked_.insert(key, v);
}
}
// not part of the formal algorithm, but needed to allow initialization of new variables outside by the user
thetaFuture_ = expmap(thetaFuture_, deltaMarked_);
}
}
template<class Conditional, class Config>
void ISAM2<Conditional, Config>::linear_update(const FactorGraph<GaussianFactor>& newFactors) {
// Input: BayesTree(this), newFactors
// 1. Remove top of Bayes tree and convert to a factor graph:
// (a) For each affected variable, remove the corresponding clique and all parents up to the root.
// (b) Store orphaned sub-trees \BayesTree_{O} of removed cliques.
const list<Symbol> newKeys = newFactors.keys();
Cliques& orphans;
BayesNet<GaussianConditional> affectedBayesNet;
this->removeTop(newKeys, affectedBayesNet, orphans);
FactorGraph<GaussianFactor> factors(affectedBayesNet);
// 2. Add the new factors \Factors' into the resulting factor graph
factors.push_back(newFactors);
// 3. Re-order and eliminate the factor graph into a Bayes net (Algorithm [alg:eliminate]), and re-assemble into a new Bayes tree (Algorithm [alg:BayesTree])
// create an ordering for the new and contaminated factors
// newKeys are passed in: those variables will be forced to the end in the ordering
set<Symbol> newKeysSet;
newKeysSet.insert(newKeys.begin(), newKeys.end());
Ordering ordering = factors.getConstrainedOrdering(newKeysSet);
// eliminate into a Bayes net
BayesNet<Conditional> bayesNet = _eliminate(factors, cached_, ordering);
// Create Index from ordering
IndexTable<Symbol> index(ordering);
// insert conditionals back in, straight into the topless bayesTree
typename BayesNet<Conditional>::const_reverse_iterator rit;
for ( rit=bayesNet.rbegin(); rit != bayesNet.rend(); ++rit )
this->insert(*rit, index);
// Save number of affectedCliques
lastAffectedCliqueCount = this->size();
// 4. Insert the orphans back into the new Bayes tree.
// add orphans to the bottom of the new tree
BOOST_FOREACH(sharedClique orphan, orphans) {
Symbol parentRepresentative = findParentClique(orphan->separator_, index);
sharedClique parent = (*this)[parentRepresentative];
parent->children_ += orphan;
orphan->parent_ = parent; // set new parent!
}
// Output: BayesTree(this)
}
template<class Conditional, class Config>
void ISAM2<Conditional, Config>::fluid_relinearization(double relinearize_threshold) {
// Input: nonlinear factors factors_, linearization point theta_, Bayes tree (this), delta_
// 1. Mark variables in \Delta above threshold \beta: J=\{\Delta_{j}\in\Delta|\Delta_{j}\geq\beta\}.
std::list<Symbol> marked;
VectorConfig deltaMarked;
for (VectorConfig::const_iterator it = delta_.begin(); it!=delta_.end(); it++) {
Symbol key = it->first;
Vector v = it->second;
if (max(abs(v)) >= relinearize_threshold) {
marked.push_back(key);
deltaMarked.insert(key, v);
}
}
// 2. Update linearization point for marked variables: \Theta_{J}:=\Theta_{J}+\Delta_{J}.
theta_ = expmap(theta_, deltaMarked);
// 3. Mark all cliques that involve marked variables \Theta_{J} and all their ancestors.
// 4. From the leaves to the top, if a clique is marked:
// re-linearize the original factors in \Factors associated with the clique,
// add the cached marginal factors from its children, and re-eliminate.
// Output: updated Bayes tree (this), updated linearization point theta_
}
template<class Conditional, class Config>
void ISAM2<Conditional, Config>::update(
const NonlinearFactorGraph<Config>& newFactors, const Config& newTheta,
double wildfire_threshold, double relinearize_threshold, bool relinearize) {
#if 1
// old algorithm:
Cliques orphans;
this->update_internal(newFactors, newTheta, orphans, wildfire_threshold, relinearize_threshold, relinearize);
#else
// 1. Add any new factors \Factors:=\Factors\cup\Factors'.
nonlinearFactors_.push_back(newFactors);
// 2. Initialize any new variables \Theta_{new} and add \Theta:=\Theta\cup\Theta_{new}.
theta_.insert(newTheta);
// 3. Linearize new factor
FactorGraph<GaussianFactor> linearFactors = newFactors.linearize(theta_);
// 4. Linear iSAM step (alg 3)
linear_update(linearFactors); // in: this
// 5. Calculate Delta (alg 0)
delta_ = optimize2(*this, wildfire_threshold);
// 6. Iterate Algorithm 4 until no more re-linearizations occur
if (relinearize)
fluid_relinearization(relinearize_threshold); // in: delta_, theta_, nonlinearFactors_, this
// todo: linearization point and delta_ do not fit... have to update delta again
delta_ = optimize2(*this, wildfire_threshold);
#endif
}
/* ************************************************************************* */
}
/// namespace gtsam