gtsam/gtsam/hybrid/tests/testHybridBayesNet.cpp

412 lines
14 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testHybridBayesNet.cpp
* @brief Unit tests for HybridBayesNet
* @author Varun Agrawal
* @author Fan Jiang
* @author Frank Dellaert
* @date December 2021
*/
#include <gtsam/hybrid/HybridBayesNet.h>
#include <gtsam/hybrid/HybridBayesTree.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include "Switching.h"
#include "TinyHybridExample.h"
// Include for test suite
#include <CppUnitLite/TestHarness.h>
using namespace std;
using namespace gtsam;
using noiseModel::Isotropic;
using symbol_shorthand::M;
using symbol_shorthand::X;
using symbol_shorthand::Z;
static const Key asiaKey = 0;
static const DiscreteKey Asia(asiaKey, 2);
/* ****************************************************************************/
// Test creation of a pure discrete Bayes net.
TEST(HybridBayesNet, Creation) {
HybridBayesNet bayesNet;
bayesNet.emplace_back(new DiscreteConditional(Asia, "99/1"));
DiscreteConditional expected(Asia, "99/1");
CHECK(bayesNet.at(0)->asDiscrete());
EXPECT(assert_equal(expected, *bayesNet.at(0)->asDiscrete()));
}
/* ****************************************************************************/
// Test adding a Bayes net to another one.
TEST(HybridBayesNet, Add) {
HybridBayesNet bayesNet;
bayesNet.emplace_back(new DiscreteConditional(Asia, "99/1"));
HybridBayesNet other;
other.add(bayesNet);
EXPECT(bayesNet.equals(other));
}
/* ****************************************************************************/
// Test evaluate for a pure discrete Bayes net P(Asia).
TEST(HybridBayesNet, EvaluatePureDiscrete) {
HybridBayesNet bayesNet;
bayesNet.emplace_back(new DiscreteConditional(Asia, "4/6"));
HybridValues values;
values.insert(asiaKey, 0);
EXPECT_DOUBLES_EQUAL(0.4, bayesNet.evaluate(values), 1e-9);
}
/* ****************************************************************************/
// Test creation of a tiny hybrid Bayes net.
TEST(HybridBayesNet, Tiny) {
auto bn = tiny::createHybridBayesNet();
EXPECT_LONGS_EQUAL(3, bn.size());
const VectorValues vv{{Z(0), Vector1(5.0)}, {X(0), Vector1(5.0)}};
auto fg = bn.toFactorGraph(vv);
EXPECT_LONGS_EQUAL(3, fg.size());
// Check that the ratio of probPrime to evaluate is the same for all modes.
std::vector<double> ratio(2);
for (size_t mode : {0, 1}) {
const HybridValues hv{vv, {{M(0), mode}}};
ratio[mode] = std::exp(-fg.error(hv)) / bn.evaluate(hv);
}
EXPECT_DOUBLES_EQUAL(ratio[0], ratio[1], 1e-8);
}
/* ****************************************************************************/
// Test evaluate for a hybrid Bayes net P(X0|X1) P(X1|Asia) P(Asia).
TEST(HybridBayesNet, evaluateHybrid) {
const auto continuousConditional = GaussianConditional::sharedMeanAndStddev(
X(0), 2 * I_1x1, X(1), Vector1(-4.0), 5.0);
const SharedDiagonal model0 = noiseModel::Diagonal::Sigmas(Vector1(2.0)),
model1 = noiseModel::Diagonal::Sigmas(Vector1(3.0));
const auto conditional0 = std::make_shared<GaussianConditional>(
X(1), Vector1::Constant(5), I_1x1, model0),
conditional1 = std::make_shared<GaussianConditional>(
X(1), Vector1::Constant(2), I_1x1, model1);
// Create hybrid Bayes net.
HybridBayesNet bayesNet;
bayesNet.push_back(continuousConditional);
bayesNet.emplace_back(
new GaussianMixture({X(1)}, {}, {Asia}, {conditional0, conditional1}));
bayesNet.emplace_back(new DiscreteConditional(Asia, "99/1"));
// Create values at which to evaluate.
HybridValues values;
values.insert(asiaKey, 0);
values.insert(X(0), Vector1(-6));
values.insert(X(1), Vector1(1));
const double conditionalProbability =
continuousConditional->evaluate(values.continuous());
const double mixtureProbability = conditional0->evaluate(values.continuous());
EXPECT_DOUBLES_EQUAL(conditionalProbability * mixtureProbability * 0.99,
bayesNet.evaluate(values), 1e-9);
}
/* ****************************************************************************/
// Test choosing an assignment of conditionals
TEST(HybridBayesNet, Choose) {
Switching s(4);
const Ordering ordering(s.linearizationPoint.keys());
const auto [hybridBayesNet, remainingFactorGraph] =
s.linearizedFactorGraph.eliminatePartialSequential(ordering);
DiscreteValues assignment;
assignment[M(0)] = 1;
assignment[M(1)] = 1;
assignment[M(2)] = 0;
GaussianBayesNet gbn = hybridBayesNet->choose(assignment);
EXPECT_LONGS_EQUAL(4, gbn.size());
EXPECT(assert_equal(*(*hybridBayesNet->at(0)->asMixture())(assignment),
*gbn.at(0)));
EXPECT(assert_equal(*(*hybridBayesNet->at(1)->asMixture())(assignment),
*gbn.at(1)));
EXPECT(assert_equal(*(*hybridBayesNet->at(2)->asMixture())(assignment),
*gbn.at(2)));
EXPECT(assert_equal(*(*hybridBayesNet->at(3)->asMixture())(assignment),
*gbn.at(3)));
}
/* ****************************************************************************/
// Test Bayes net optimize
TEST(HybridBayesNet, OptimizeAssignment) {
Switching s(4);
const Ordering ordering(s.linearizationPoint.keys());
const auto [hybridBayesNet, remainingFactorGraph] =
s.linearizedFactorGraph.eliminatePartialSequential(ordering);
DiscreteValues assignment;
assignment[M(0)] = 1;
assignment[M(1)] = 1;
assignment[M(2)] = 1;
VectorValues delta = hybridBayesNet->optimize(assignment);
// The linearization point has the same value as the key index,
// e.g. X(0) = 1, X(1) = 2,
// but the factors specify X(k) = k-1, so delta should be -1.
VectorValues expected_delta;
expected_delta.insert(make_pair(X(0), -Vector1::Ones()));
expected_delta.insert(make_pair(X(1), -Vector1::Ones()));
expected_delta.insert(make_pair(X(2), -Vector1::Ones()));
expected_delta.insert(make_pair(X(3), -Vector1::Ones()));
EXPECT(assert_equal(expected_delta, delta));
}
/* ****************************************************************************/
// Test Bayes net optimize
TEST(HybridBayesNet, Optimize) {
Switching s(4, 1.0, 0.1, {0, 1, 2, 3}, "1/1 1/1");
HybridBayesNet::shared_ptr hybridBayesNet =
s.linearizedFactorGraph.eliminateSequential();
HybridValues delta = hybridBayesNet->optimize();
// NOTE: The true assignment is 111, but the discrete priors cause 101
DiscreteValues expectedAssignment;
expectedAssignment[M(0)] = 1;
expectedAssignment[M(1)] = 1;
expectedAssignment[M(2)] = 1;
EXPECT(assert_equal(expectedAssignment, delta.discrete()));
VectorValues expectedValues;
expectedValues.insert(X(0), -Vector1::Ones());
expectedValues.insert(X(1), -Vector1::Ones());
expectedValues.insert(X(2), -Vector1::Ones());
expectedValues.insert(X(3), -Vector1::Ones());
EXPECT(assert_equal(expectedValues, delta.continuous(), 1e-5));
}
/* ****************************************************************************/
// Test Bayes net error
TEST(HybridBayesNet, Pruning) {
Switching s(3);
HybridBayesNet::shared_ptr posterior =
s.linearizedFactorGraph.eliminateSequential();
EXPECT_LONGS_EQUAL(5, posterior->size());
HybridValues delta = posterior->optimize();
auto actualTree = posterior->evaluate(delta.continuous());
// Regression test on density tree.
std::vector<DiscreteKey> discrete_keys = {{M(0), 2}, {M(1), 2}};
std::vector<double> leaves = {6.1112424, 20.346113, 17.785849, 19.738098};
AlgebraicDecisionTree<Key> expected(discrete_keys, leaves);
EXPECT(assert_equal(expected, actualTree, 1e-6));
// Prune and get probabilities
auto prunedBayesNet = posterior->prune(2);
auto prunedTree = prunedBayesNet.evaluate(delta.continuous());
// Regression test on pruned logProbability tree
std::vector<double> pruned_leaves = {0.0, 32.713418, 0.0, 31.735823};
AlgebraicDecisionTree<Key> expected_pruned(discrete_keys, pruned_leaves);
EXPECT(assert_equal(expected_pruned, prunedTree, 1e-6));
// Verify logProbability computation and check specific logProbability value
const DiscreteValues discrete_values{{M(0), 1}, {M(1), 1}};
const HybridValues hybridValues{delta.continuous(), discrete_values};
double logProbability = 0;
logProbability += posterior->at(0)->asMixture()->logProbability(hybridValues);
logProbability += posterior->at(1)->asMixture()->logProbability(hybridValues);
logProbability += posterior->at(2)->asMixture()->logProbability(hybridValues);
// NOTE(dellaert): the discrete errors were not added in logProbability tree!
logProbability +=
posterior->at(3)->asDiscrete()->logProbability(hybridValues);
logProbability +=
posterior->at(4)->asDiscrete()->logProbability(hybridValues);
// Regression
double density = exp(logProbability);
EXPECT_DOUBLES_EQUAL(density,
1.6078460548731697 * actualTree(discrete_values), 1e-6);
EXPECT_DOUBLES_EQUAL(density, prunedTree(discrete_values), 1e-9);
EXPECT_DOUBLES_EQUAL(logProbability, posterior->logProbability(hybridValues),
1e-9);
}
/* ****************************************************************************/
// Test Bayes net pruning
TEST(HybridBayesNet, Prune) {
Switching s(4);
HybridBayesNet::shared_ptr posterior =
s.linearizedFactorGraph.eliminateSequential();
EXPECT_LONGS_EQUAL(7, posterior->size());
HybridValues delta = posterior->optimize();
auto prunedBayesNet = posterior->prune(2);
HybridValues pruned_delta = prunedBayesNet.optimize();
EXPECT(assert_equal(delta.discrete(), pruned_delta.discrete()));
EXPECT(assert_equal(delta.continuous(), pruned_delta.continuous()));
}
/* ****************************************************************************/
// Test Bayes net updateDiscreteConditionals
TEST(HybridBayesNet, UpdateDiscreteConditionals) {
Switching s(4);
HybridBayesNet::shared_ptr posterior =
s.linearizedFactorGraph.eliminateSequential();
EXPECT_LONGS_EQUAL(7, posterior->size());
size_t maxNrLeaves = 3;
DiscreteConditional discreteConditionals;
for (auto&& conditional : *posterior) {
if (conditional->isDiscrete()) {
discreteConditionals =
discreteConditionals * (*conditional->asDiscrete());
}
}
const DecisionTreeFactor::shared_ptr prunedDecisionTree =
std::make_shared<DecisionTreeFactor>(
discreteConditionals.prune(maxNrLeaves));
#ifdef GTSAM_DT_MERGING
EXPECT_LONGS_EQUAL(maxNrLeaves + 2 /*2 zero leaves*/,
prunedDecisionTree->nrLeaves());
#else
EXPECT_LONGS_EQUAL(8 /*full tree*/, prunedDecisionTree->nrLeaves());
#endif
// regression
DiscreteKeys dkeys{{M(0), 2}, {M(1), 2}, {M(2), 2}};
DecisionTreeFactor::ADT potentials(
dkeys, std::vector<double>{0, 0, 0, 0.505145423, 0, 1, 0, 0.494854577});
DiscreteConditional expected_discrete_conditionals(1, dkeys, potentials);
// Prune!
posterior->prune(maxNrLeaves);
// Functor to verify values against the expected_discrete_conditionals
auto checker = [&](const Assignment<Key>& assignment,
double probability) -> double {
// typecast so we can use this to get probability value
DiscreteValues choices(assignment);
if (prunedDecisionTree->operator()(choices) == 0) {
EXPECT_DOUBLES_EQUAL(0.0, probability, 1e-9);
} else {
EXPECT_DOUBLES_EQUAL(expected_discrete_conditionals(choices), probability,
1e-9);
}
return 0.0;
};
// Get the pruned discrete conditionals as an AlgebraicDecisionTree
auto pruned_discrete_conditionals = posterior->at(4)->asDiscrete();
auto discrete_conditional_tree =
std::dynamic_pointer_cast<DecisionTreeFactor::ADT>(
pruned_discrete_conditionals);
// The checker functor verifies the values for us.
discrete_conditional_tree->apply(checker);
}
/* ****************************************************************************/
// Test HybridBayesNet sampling.
TEST(HybridBayesNet, Sampling) {
HybridNonlinearFactorGraph nfg;
auto noise_model = noiseModel::Diagonal::Sigmas(Vector1(1.0));
auto zero_motion =
std::make_shared<BetweenFactor<double>>(X(0), X(1), 0, noise_model);
auto one_motion =
std::make_shared<BetweenFactor<double>>(X(0), X(1), 1, noise_model);
std::vector<NonlinearFactor::shared_ptr> factors = {zero_motion, one_motion};
nfg.emplace_shared<PriorFactor<double>>(X(0), 0.0, noise_model);
nfg.emplace_shared<MixtureFactor>(
KeyVector{X(0), X(1)}, DiscreteKeys{DiscreteKey(M(0), 2)}, factors);
DiscreteKey mode(M(0), 2);
nfg.emplace_shared<DiscreteDistribution>(mode, "1/1");
Values initial;
double z0 = 0.0, z1 = 1.0;
initial.insert<double>(X(0), z0);
initial.insert<double>(X(1), z1);
// Create the factor graph from the nonlinear factor graph.
HybridGaussianFactorGraph::shared_ptr fg = nfg.linearize(initial);
// Eliminate into BN
HybridBayesNet::shared_ptr bn = fg->eliminateSequential();
// Set up sampling
std::mt19937_64 gen(11);
// Initialize containers for computing the mean values.
vector<double> discrete_samples;
VectorValues average_continuous;
size_t num_samples = 1000;
for (size_t i = 0; i < num_samples; i++) {
// Sample
HybridValues sample = bn->sample(&gen);
discrete_samples.push_back(sample.discrete().at(M(0)));
if (i == 0) {
average_continuous.insert(sample.continuous());
} else {
average_continuous += sample.continuous();
}
}
EXPECT_LONGS_EQUAL(2, average_continuous.size());
EXPECT_LONGS_EQUAL(num_samples, discrete_samples.size());
// Regressions don't work across platforms :-(
// // regression for specific RNG seed
// double discrete_sum =
// std::accumulate(discrete_samples.begin(), discrete_samples.end(),
// decltype(discrete_samples)::value_type(0));
// EXPECT_DOUBLES_EQUAL(0.477, discrete_sum / num_samples, 1e-9);
// VectorValues expected;
// expected.insert({X(0), Vector1(-0.0131207162712)});
// expected.insert({X(1), Vector1(-0.499026377568)});
// // regression for specific RNG seed
// EXPECT(assert_equal(expected, average_continuous.scale(1.0 /
// num_samples)));
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */