gtsam/gtsam/hybrid/tests/testGaussianMixtureFactor.cpp

203 lines
6.1 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testGaussianMixtureFactor.cpp
* @brief Unit tests for GaussianMixtureFactor
* @author Varun Agrawal
* @author Fan Jiang
* @author Frank Dellaert
* @date December 2021
*/
#include <gtsam/base/TestableAssertions.h>
#include <gtsam/discrete/DiscreteValues.h>
#include <gtsam/hybrid/GaussianMixture.h>
#include <gtsam/hybrid/GaussianMixtureFactor.h>
#include <gtsam/hybrid/HybridValues.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/linear/GaussianFactorGraph.h>
// Include for test suite
#include <CppUnitLite/TestHarness.h>
using namespace std;
using namespace gtsam;
using noiseModel::Isotropic;
using symbol_shorthand::M;
using symbol_shorthand::X;
/* ************************************************************************* */
// Check iterators of empty mixture.
TEST(GaussianMixtureFactor, Constructor) {
GaussianMixtureFactor factor;
GaussianMixtureFactor::const_iterator const_it = factor.begin();
CHECK(const_it == factor.end());
GaussianMixtureFactor::iterator it = factor.begin();
CHECK(it == factor.end());
}
/* ************************************************************************* */
// "Add" two mixture factors together.
TEST(GaussianMixtureFactor, Sum) {
DiscreteKey m1(1, 2), m2(2, 3);
auto A1 = Matrix::Zero(2, 1);
auto A2 = Matrix::Zero(2, 2);
auto A3 = Matrix::Zero(2, 3);
auto b = Matrix::Zero(2, 1);
Vector2 sigmas;
sigmas << 1, 2;
auto model = noiseModel::Diagonal::Sigmas(sigmas, true);
auto f10 = std::make_shared<JacobianFactor>(X(1), A1, X(2), A2, b);
auto f11 = std::make_shared<JacobianFactor>(X(1), A1, X(2), A2, b);
auto f20 = std::make_shared<JacobianFactor>(X(1), A1, X(3), A3, b);
auto f21 = std::make_shared<JacobianFactor>(X(1), A1, X(3), A3, b);
auto f22 = std::make_shared<JacobianFactor>(X(1), A1, X(3), A3, b);
std::vector<GaussianFactor::shared_ptr> factorsA{f10, f11};
std::vector<GaussianFactor::shared_ptr> factorsB{f20, f21, f22};
// TODO(Frank): why specify keys at all? And: keys in factor should be *all*
// keys, deviating from Kevin's scheme. Should we index DT on DiscreteKey?
// Design review!
GaussianMixtureFactor mixtureFactorA({X(1), X(2)}, {m1}, factorsA);
GaussianMixtureFactor mixtureFactorB({X(1), X(3)}, {m2}, factorsB);
// Check that number of keys is 3
EXPECT_LONGS_EQUAL(3, mixtureFactorA.keys().size());
// Check that number of discrete keys is 1
EXPECT_LONGS_EQUAL(1, mixtureFactorA.discreteKeys().size());
// Create sum of two mixture factors: it will be a decision tree now on both
// discrete variables m1 and m2:
GaussianFactorGraphTree sum;
sum += mixtureFactorA;
sum += mixtureFactorB;
// Let's check that this worked:
Assignment<Key> mode;
mode[m1.first] = 1;
mode[m2.first] = 2;
auto actual = sum(mode);
EXPECT(actual.at(0) == f11);
EXPECT(actual.at(1) == f22);
}
/* ************************************************************************* */
TEST(GaussianMixtureFactor, Printing) {
DiscreteKey m1(1, 2);
auto A1 = Matrix::Zero(2, 1);
auto A2 = Matrix::Zero(2, 2);
auto b = Matrix::Zero(2, 1);
auto f10 = std::make_shared<JacobianFactor>(X(1), A1, X(2), A2, b);
auto f11 = std::make_shared<JacobianFactor>(X(1), A1, X(2), A2, b);
std::vector<GaussianFactor::shared_ptr> factors{f10, f11};
GaussianMixtureFactor mixtureFactor({X(1), X(2)}, {m1}, factors);
std::string expected =
R"(Hybrid [x1 x2; 1]{
Choice(1)
0 Leaf [1] :
A[x1] = [
0;
0
]
A[x2] = [
0, 0;
0, 0
]
b = [ 0 0 ]
No noise model
1 Leaf [1] :
A[x1] = [
0;
0
]
A[x2] = [
0, 0;
0, 0
]
b = [ 0 0 ]
No noise model
}
)";
EXPECT(assert_print_equal(expected, mixtureFactor));
}
/* ************************************************************************* */
TEST(GaussianMixtureFactor, GaussianMixture) {
KeyVector keys;
keys.push_back(X(0));
keys.push_back(X(1));
DiscreteKeys dKeys;
dKeys.emplace_back(M(0), 2);
dKeys.emplace_back(M(1), 2);
auto gaussians = std::make_shared<GaussianConditional>();
GaussianMixture::Conditionals conditionals(gaussians);
GaussianMixture gm({}, keys, dKeys, conditionals);
EXPECT_LONGS_EQUAL(2, gm.discreteKeys().size());
}
/* ************************************************************************* */
// Test the error of the GaussianMixtureFactor
TEST(GaussianMixtureFactor, Error) {
DiscreteKey m1(1, 2);
auto A01 = Matrix2::Identity();
auto A02 = Matrix2::Identity();
auto A11 = Matrix2::Identity();
auto A12 = Matrix2::Identity() * 2;
auto b = Vector2::Zero();
auto f0 = std::make_shared<JacobianFactor>(X(1), A01, X(2), A02, b);
auto f1 = std::make_shared<JacobianFactor>(X(1), A11, X(2), A12, b);
std::vector<GaussianFactor::shared_ptr> factors{f0, f1};
GaussianMixtureFactor mixtureFactor({X(1), X(2)}, {m1}, factors);
VectorValues continuousValues;
continuousValues.insert(X(1), Vector2(0, 0));
continuousValues.insert(X(2), Vector2(1, 1));
// error should return a tree of errors, with nodes for each discrete value.
AlgebraicDecisionTree<Key> error_tree = mixtureFactor.error(continuousValues);
std::vector<DiscreteKey> discrete_keys = {m1};
// Error values for regression test
std::vector<double> errors = {1, 4};
AlgebraicDecisionTree<Key> expected_error(discrete_keys, errors);
EXPECT(assert_equal(expected_error, error_tree));
// Test for single leaf given discrete assignment P(X|M,Z).
DiscreteValues discreteValues;
discreteValues[m1.first] = 1;
EXPECT_DOUBLES_EQUAL(
4.0, mixtureFactor.error({continuousValues, discreteValues}),
1e-9);
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */