gtsam/cpp/Rot3.cpp

171 lines
5.5 KiB
C++

/**
* @file Rot3.cpp
* @brief Rotation (internal: 3*3 matrix representation*)
* @author Alireza Fathi
* @author Christian Potthast
* @author Frank Dellaert
*/
#include "Rot3.h"
using namespace std;
namespace gtsam {
/* ************************************************************************* */
/** faster than below ? */
/* ************************************************************************* */
Rot3 rodriguez(const Vector& w, double t) {
double l_w = 0.0;
for (int i = 0; i < 3; i++)
l_w += pow(w(i), 2.0);
if (l_w != 1.0) throw domain_error("rodriguez: length of w should be 1");
double ct = cos(t), st = sin(t);
Point3 r1 = Point3(ct + w(0) * w(0) * (1 - ct), w(2) * st + w(0) * w(1) * (1 - ct), -w(1) * st + w(0) * w(2) * (1 - ct));
Point3 r2 = Point3(w(1) * w(0) * (1 - ct) - w(2) * st, w(1) * w(1) * (1 - ct) + ct, w(1) * w(2) * (1 - ct) + w(0) * st);
Point3 r3 = Point3(w(1) * st + w(2) * w(0) * (1 - ct), -w(0) * st + w(2) * w(1) * (1 - ct), ct + w(2) * w(2) * (1 - ct));
return Rot3(r1, r2, r3);
}
/* ************************************************************************* */
Rot3 rodriguez(double wx, double wy, double wz) {
Matrix J = skewSymmetric(wx, wy, wz);
double t2 = wx * wx + wy * wy + wz * wz;
if (t2 < 1e-10) return Rot3();
double t = sqrt(t2);
Matrix R = eye(3, 3) + sin(t) / t * J + (1.0 - cos(t)) / t2 * (J * J);
return R; // matrix constructor will be tripped
}
/* ************************************************************************* */
Rot3 rodriguez(const Vector& v) {
return rodriguez(v(0), v(1), v(2));
}
/* ************************************************************************* */
Rot3 exmap(const Rot3& R, const Vector& v) {
return rodriguez(v) * R;
}
/* ************************************************************************* */
Rot3 Rot3::exmap(const Vector& v) const {
if (zero(v)) return (*this);
return rodriguez(v) * (*this);
}
/* ************************************************************************* */
Point3 rotate(const Rot3& R, const Point3& p) {
return R * p;
}
/* ************************************************************************* */
Matrix Drotate1(const Rot3& R, const Point3& p) {
Point3 q = R * p;
return skewSymmetric(-q.x(), -q.y(), -q.z());
}
/* ************************************************************************* */
Matrix Drotate2(const Rot3& R) {
return R.matrix();
}
/* ************************************************************************* */
Point3 unrotate(const Rot3& R, const Point3& p) {
return R.unrotate(p);
}
/* ************************************************************************* */
bool Rot3::equals(const Rot3 & R, double tol) const {
return equal_with_abs_tol(matrix(), R.matrix(), tol);
}
/* ************************************************************************* */
/** see libraries/caml/geometry/math.lyx, derivative of unrotate */
/* ************************************************************************* */
Matrix Dunrotate1(const Rot3 & R, const Point3 & p) {
Point3 q = R.unrotate(p);
return skewSymmetric(q.x(), q.y(), q.z()) * R.transpose();
}
/* ************************************************************************* */
Matrix Dunrotate2(const Rot3 & R) {
return R.transpose();
}
/* ************************************************************************* */
bool assert_equal(const Rot3 & A, const Rot3 & B, double tol) {
if(A.equals(B,tol)) return true;
printf("not equal:\n");
A.print("A");
B.print("B");
return false;
}
/* ************************************************************************* */
/** This function receives a rotation 3 by 3 matrix and returns 3 rotation angles.
* The implementation is based on the algorithm in multiple view geometry
* the function returns a vector that its arguments are: thetax, thetay, thetaz in radians.
*/
/* ************************************************************************* */
Vector RQ(Matrix R) {
double Cx = R(2, 2) / (double) ((sqrt(pow((double) (R(2, 2)), 2.0) + pow(
(double) (R(2, 1)), 2.0)))); //cosX
double Sx = -R(2, 1) / (double) ((sqrt(pow((double) (R(2, 2)), 2.0) + pow(
(double) (R(2, 1)), 2.0)))); //sinX
Matrix Qx(3, 3);
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++)
Qx(i, j) = 0;
Qx(0, 0) = 1;
Qx(1, 1) = Cx;
Qx(1, 2) = -Sx;
Qx(2, 1) = Sx;
Qx(2, 2) = Cx;
R = R * Qx;
double Cy = R(2, 2) / (sqrt(pow((double) (R(2, 2)), 2.0) + pow((double) (R(
2, 0)), 2.0))); //cosY
double Sy = R(2, 0) / (sqrt(pow((double) (R(2, 2)), 2.0) + pow((double) (R(
2, 0)), 2.0))); //sinY
Matrix Qy(3, 3);
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++)
Qy(i, j) = 0;
Qy(0, 0) = Cy;
Qy(0, 2) = Sy;
Qy(1, 1) = 1;
Qy(2, 0) = -Sy;
Qy(2, 2) = Cy;
R = R * Qy;
double Cz = R(1, 1) / (sqrt(pow((double) (R(1, 1)), 2.0) + pow((double) (R(
1, 0)), 2.0))); //cosZ
double Sz = -R(1, 0) / (sqrt(pow((double) (R(1, 1)), 2.0) + pow(
(double) (R(1, 0)), 2.0)));//sinZ
Matrix Qz(3, 3);
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++)
Qz(i, j) = 0;
Qz(0, 0) = Cz;
Qz(0, 1) = -Sz;
Qz(1, 0) = Sz;
Qz(1, 1) = Cz;
Qz(2, 2) = 1;
R = R * Qz;
double pi = atan2(sqrt(2.0) / 2.0, sqrt(2.0) / 2.0) * 4.0;
Vector result(3);
result(0) = -atan2(Sx, Cx);
result(1) = -atan2(Sy, Cy);
result(2) = -atan2(Sz, Cz);
return result;
}
/* ************************************************************************* */
} // namespace gtsam