116 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			116 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation, 
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /** 
 | |
|  * @file    testNonlinearFactorGraph.cpp
 | |
|  * @brief   Unit tests for Non-Linear Factor Graph
 | |
|  * @brief   testNonlinearFactorGraph
 | |
|  * @author  Carlos Nieto
 | |
|  * @author  Christian Potthast
 | |
|  */
 | |
| 
 | |
| /*STL/C++*/
 | |
| #include <iostream>
 | |
| using namespace std;
 | |
| 
 | |
| #include <boost/assign/std/list.hpp>
 | |
| #include <boost/assign/std/set.hpp>
 | |
| using namespace boost::assign;
 | |
| 
 | |
| #include <CppUnitLite/TestHarness.h>
 | |
| 
 | |
| #include <gtsam/base/Testable.h>
 | |
| #include <gtsam/base/Matrix.h>
 | |
| #include <gtsam/slam/smallExample.h>
 | |
| #include <gtsam/inference/FactorGraph.h>
 | |
| #include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | |
| 
 | |
| using namespace gtsam;
 | |
| using namespace example;
 | |
| 
 | |
| Key kx(size_t i) { return Symbol('x',i); }
 | |
| Key kl(size_t i) { return Symbol('l',i); }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( Graph, equals )
 | |
| {
 | |
| 	Graph fg = createNonlinearFactorGraph();
 | |
| 	Graph fg2 = createNonlinearFactorGraph();
 | |
| 	CHECK( fg.equals(fg2) );
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( Graph, error )
 | |
| {
 | |
| 	Graph fg = createNonlinearFactorGraph();
 | |
| 	Values c1 = createValues();
 | |
| 	double actual1 = fg.error(c1);
 | |
| 	DOUBLES_EQUAL( 0.0, actual1, 1e-9 );
 | |
| 
 | |
| 	Values c2 = createNoisyValues();
 | |
| 	double actual2 = fg.error(c2);
 | |
| 	DOUBLES_EQUAL( 5.625, actual2, 1e-9 );
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( Graph, keys )
 | |
| {
 | |
| 	Graph fg = createNonlinearFactorGraph();
 | |
| 	set<Key> actual = fg.keys();
 | |
| 	LONGS_EQUAL(3, actual.size());
 | |
| 	set<Key>::const_iterator it = actual.begin();
 | |
| 	LONGS_EQUAL(kl(1), *(it++));
 | |
| 	LONGS_EQUAL(kx(1), *(it++));
 | |
| 	LONGS_EQUAL(kx(2), *(it++));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( Graph, GET_ORDERING)
 | |
| {
 | |
| //  Ordering expected; expected += "x1","l1","x2"; // For starting with x1,x2,l1
 | |
|   Ordering expected; expected += kl(1), kx(2), kx(1); // For starting with l1,x1,x2
 | |
|   Graph nlfg = createNonlinearFactorGraph();
 | |
|   SymbolicFactorGraph::shared_ptr symbolic;
 | |
|   Ordering::shared_ptr ordering;
 | |
|   boost::tie(symbolic, ordering) = nlfg.symbolic(createNoisyValues());
 | |
|   Ordering actual = *nlfg.orderingCOLAMD(createNoisyValues());
 | |
|   CHECK(assert_equal(expected,actual));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( Graph, probPrime )
 | |
| {
 | |
| 	Graph fg = createNonlinearFactorGraph();
 | |
| 	Values cfg = createValues();
 | |
| 
 | |
| 	// evaluate the probability of the factor graph
 | |
| 	double actual = fg.probPrime(cfg);
 | |
| 	double expected = 1.0;
 | |
| 	DOUBLES_EQUAL(expected,actual,0);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( Graph, linearize )
 | |
| {
 | |
| 	Graph fg = createNonlinearFactorGraph();
 | |
| 	Values initial = createNoisyValues();
 | |
| 	boost::shared_ptr<FactorGraph<GaussianFactor> > linearized = fg.linearize(initial, *initial.orderingArbitrary());
 | |
| 	FactorGraph<GaussianFactor> expected = createGaussianFactorGraph(*initial.orderingArbitrary());
 | |
| 	CHECK(assert_equal(expected,*linearized)); // Needs correct linearizations
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main() {
 | |
| 	TestResult tr;
 | |
| 	return TestRegistry::runAllTests(tr);
 | |
| }
 | |
| /* ************************************************************************* */
 |