67 lines
1.8 KiB
C++
67 lines
1.8 KiB
C++
/**
|
|
* @file PriorFactor.h
|
|
* @authors Frank Dellaert
|
|
**/
|
|
#pragma once
|
|
|
|
#include <ostream>
|
|
#include "NonlinearFactor.h"
|
|
#include "Pose2.h"
|
|
|
|
namespace gtsam {
|
|
|
|
/**
|
|
* A class for a soft prior on any Lie type
|
|
* T is the Lie group type, Config where the T's are gotten from
|
|
*/
|
|
template<class Config, class Key, class T>
|
|
class PriorFactor: public NonlinearFactor1<Config, Key, T> {
|
|
|
|
private:
|
|
|
|
typedef NonlinearFactor1<Config, Key, T> Base;
|
|
|
|
T prior_; /** The measurement */
|
|
Matrix square_root_inverse_covariance_; /** sqrt(inv(covariance)) */
|
|
|
|
public:
|
|
|
|
// shorthand for a smart pointer to a factor
|
|
typedef typename boost::shared_ptr<PriorFactor> shared_ptr;
|
|
|
|
/** Constructor */
|
|
PriorFactor(const Key& key, const T& prior, const Matrix& covariance) :
|
|
Base(1.0, key), prior_(prior) {
|
|
square_root_inverse_covariance_ = inverse_square_root(covariance);
|
|
}
|
|
|
|
/** implement functions needed for Testable */
|
|
|
|
/** print */
|
|
void print(const std::string& s) const {
|
|
Base::print(s);
|
|
prior_.print("prior");
|
|
gtsam::print(square_root_inverse_covariance_,
|
|
"Square Root Inverse Covariance");
|
|
}
|
|
|
|
/** equals */
|
|
bool equals(const NonlinearFactor<Config>& expected, double tol) const {
|
|
const PriorFactor<Config, Key, T> *e = dynamic_cast<const PriorFactor<
|
|
Config, Key, T>*> (&expected);
|
|
return e != NULL && Base::equals(expected) && this->prior_.equals(
|
|
e->prior_, tol);
|
|
}
|
|
|
|
/** implement functions needed to derive from Factor */
|
|
|
|
/** vector of errors */
|
|
Vector evaluateError(const T& p, boost::optional<Matrix&> H = boost::none) const {
|
|
if (H) (*H) = square_root_inverse_covariance_;
|
|
// manifold equivalent of h(x)-z -> log(z,h(x))
|
|
return square_root_inverse_covariance_ * logmap(prior_, p);
|
|
}
|
|
};
|
|
|
|
} /// namespace gtsam
|