gtsam/gtsam_unstable/discrete/examples/schedulingExample.cpp

349 lines
11 KiB
C++

/*
* schedulingExample.cpp
* @brief hard scheduling example
* @date March 25, 2011
* @author Frank Dellaert
*/
//#define ENABLE_TIMING
#define ADD_NO_CACHING
#define ADD_NO_PRUNING
#include <gtsam_unstable/discrete/Scheduler.h>
#include <gtsam/base/debug.h>
#include <gtsam/base/timing.h>
#include <boost/assign/std/vector.hpp>
#include <boost/assign/std/map.hpp>
#include <boost/optional.hpp>
#include <boost/format.hpp>
#include <algorithm>
using namespace boost::assign;
using namespace std;
using namespace gtsam;
/* ************************************************************************* */
void addStudent(Scheduler& s, size_t i) {
switch (i) {
case 0:
s.addStudent("Michael N", "AI", "Autonomy", "Perception", "Tucker Balch");
break;
case 1:
s.addStudent("Tucker H", "Controls", "AI", "Perception", "Jim Rehg");
break;
case 2:
s.addStudent("Jake H", "Controls", "AI", "Perception", "Henrik Christensen");
break;
case 3:
s.addStudent("Tobias K", "Controls", "AI", "Autonomy", "Mike Stilman");
break;
case 4:
s.addStudent("Shu J", "Controls", "AI", "HRI", "N/A 1");
break;
case 5:
s.addStudent("Akansel C", "AI", "Autonomy", "Mechanics",
"Henrik Christensen");
break;
case 6:
s.addStudent("Tiffany C", "Controls", "N/A 1", "N/A 2", "Charlie Kemp");
break;
}
}
/* ************************************************************************* */
Scheduler largeExample(size_t nrStudents = 7) {
// char cCurrentPath[FILENAME_MAX];
// if (!getcwd(cCurrentPath, sizeof(cCurrentPath))) return errno;
// cCurrentPath[sizeof(cCurrentPath) - 1] = '\0'; /* not really required */
// printf ("The current working directory is %s", cCurrentPath);
string path("../../../gtsam_unstable/discrete/examples/");
Scheduler s(nrStudents, path + "Doodle.csv");
s.addArea("Harvey Lipkin", "Mechanics");
s.addArea("Wayne Book", "Mechanics");
s.addArea("Jun Ueda", "Mechanics");
// s.addArea("Wayne Book", "Controls");
s.addArea("Patricio Vela", "Controls");
s.addArea("Magnus Egerstedt", "Controls");
s.addArea("Jun Ueda", "Controls");
// s.addArea("Frank Dellaert", "Perception");
s.addArea("Jim Rehg", "Perception");
s.addArea("Irfan Essa", "Perception");
s.addArea("Aaron Bobick", "Perception");
s.addArea("Henrik Christensen", "Perception");
s.addArea("Mike Stilman", "AI");
s.addArea("Henrik Christensen", "AI");
s.addArea("Frank Dellaert", "AI");
s.addArea("Ayanna Howard", "AI");
// s.addArea("Tucker Balch", "AI");
s.addArea("Ayanna Howard", "Autonomy");
// s.addArea("Andrea Thomaz", "Autonomy");
s.addArea("Charlie Kemp", "Autonomy");
s.addArea("Tucker Balch", "Autonomy");
s.addArea("Ron Arkin", "Autonomy");
s.addArea("Andrea Thomaz", "HRI");
s.addArea("Karen Feigh", "HRI");
s.addArea("Charlie Kemp", "HRI");
// Allow students not to take three areas
s.addArea("N/A 1", "N/A 1");
s.addArea("N/A 2", "N/A 2");
// add students
for (size_t i = 0; i < nrStudents; i++)
addStudent(s, i);
return s;
}
/* ************************************************************************* */
void runLargeExample() {
Scheduler scheduler = largeExample();
scheduler.print();
// BUILD THE GRAPH !
size_t addMutex = 2;
scheduler.buildGraph(addMutex);
// Do brute force product and output that to file
if (scheduler.nrStudents() == 1) { // otherwise too slow
DecisionTreeFactor product = scheduler.product();
product.dot("scheduling-large", DefaultKeyFormatter, false);
}
// Do exact inference
// SETDEBUG("timing-verbose", true);
SETDEBUG("DiscreteConditional::DiscreteConditional", true);
gttic(large);
auto MPE = scheduler.optimize();
gttoc(large);
tictoc_finishedIteration();
tictoc_print();
scheduler.printAssignment(MPE);
}
/* ************************************************************************* */
// Solve a series of relaxed problems for maximum flexibility solution
void solveStaged(size_t addMutex = 2) {
// super-hack! just count...
bool debug = false;
SETDEBUG("DiscreteConditional::COUNT", true);
SETDEBUG("DiscreteConditional::DiscreteConditional", debug); // progress
// make a vector with slot availability, initially all 1
// Reads file to get count :-)
vector<double> slotsAvailable(largeExample(0).nrTimeSlots(), 1.0);
// now, find optimal value for each student, using relaxed mutex constraints
for (size_t s = 0; s < 7; s++) {
// add all students first time, then drop last one second time, etc...
Scheduler scheduler = largeExample(7 - s);
//scheduler.print(str(boost::format("Scheduler %d") % (7-s)));
// only allow slots not yet taken
scheduler.setSlotsAvailable(slotsAvailable);
// BUILD THE GRAPH !
scheduler.buildGraph(addMutex);
// Do EXACT INFERENCE
gttic_(eliminate);
DiscreteBayesNet::shared_ptr chordal = scheduler.eliminate();
gttoc_(eliminate);
// find root node
DiscreteConditional::shared_ptr root = chordal->back();
if (debug)
root->print(""/*scheduler.studentName(s)*/);
// solve root node only
size_t bestSlot = root->argmax();
// get corresponding count
DiscreteKey dkey = scheduler.studentKey(6 - s);
DiscreteValues values;
values[dkey.first] = bestSlot;
size_t count = (*root)(values);
// remove this slot from consideration
slotsAvailable[bestSlot] = 0.0;
cout << boost::format("%s = %d (%d), count = %d") % scheduler.studentName(6-s)
% scheduler.slotName(bestSlot) % bestSlot % count << endl;
}
tictoc_print_();
// Solution with addMutex = 2: (20 secs)
// TC = Wed 2 (9), count = 96375041778
// AC = Tue 2 (5), count = 4076088090
// SJ = Mon 1 (0), count = 29596704
// TK = Mon 3 (2), count = 755370
// JH = Wed 4 (11), count = 12000
// TH = Fri 2 (17), count = 220
// MN = Fri 1 (16), count = 5
//
// Mutex does make a difference !!
}
/* ************************************************************************* */
// Sample from solution found above and evaluate cost function
bool NonZero(size_t i) {
return i > 0;
}
DiscreteBayesNet::shared_ptr createSampler(size_t i,
size_t slot, vector<Scheduler>& schedulers) {
Scheduler scheduler = largeExample(0); // todo: wrong nr students
addStudent(scheduler, i);
SETDEBUG("Scheduler::buildGraph", false);
scheduler.addStudentSpecificConstraints(0, slot);
DiscreteBayesNet::shared_ptr chordal = scheduler.eliminate();
// chordal->print(scheduler[i].studentKey(0).name()); // large !
schedulers.push_back(scheduler);
return chordal;
}
void sampleSolutions() {
vector<Scheduler> schedulers;
vector<DiscreteBayesNet::shared_ptr> samplers(7);
// Given the time-slots, we can create 7 independent samplers
vector<size_t> slots;
slots += 16, 17, 11, 2, 0, 5, 9; // given slots
for (size_t i = 0; i < 7; i++)
samplers[i] = createSampler(i, slots[i], schedulers);
// now, sample schedules
for (size_t n = 0; n < 500; n++) {
vector<size_t> stats(19, 0);
vector<DiscreteValues> samples;
for (size_t i = 0; i < 7; i++) {
samples.push_back(samplers[i]->sample());
schedulers[i].accumulateStats(samples[i], stats);
}
size_t max = *max_element(stats.begin(), stats.end());
size_t min = *min_element(stats.begin(), stats.end());
size_t nz = count_if(stats.begin(), stats.end(), NonZero);
if (nz >= 15 && max <= 2) {
cout << boost::format(
"Sampled schedule %d, min = %d, nz = %d, max = %d\n") % (n + 1) % min
% nz % max;
for (size_t i = 0; i < 7; i++) {
cout << schedulers[i].studentName(0) << " : " << schedulers[i].slotName(
slots[i]) << endl;
schedulers[i].printSpecial(samples[i]);
}
}
}
// Output was
// Sampled schedule 359, min = 0, nz = 15, max = 2
// Michael N : Fri 9:00-10.30
// Michael N AI: Frank Dellaert
// Michael N Autonomy: Charlie Kemp
// Michael N Perception: Henrik Christensen
//
// Tucker H : Fri 10:30-12:00
// Tucker H AI: Ayanna Howard
// Tucker H Controls: Patricio Vela
// Tucker H Perception: Irfan Essa
//
// Jake H : Wed 3:00-4:30
// Jake H AI: Mike Stilman
// Jake H Controls: Magnus Egerstedt
// Jake H Perception: Jim Rehg
//
// Tobias K : Mon 1:30-3:00
// Tobias K AI: Ayanna Howard
// Tobias K Autonomy: Charlie Kemp
// Tobias K Controls: Magnus Egerstedt
//
// Shu J : Mon 9:00-10.30
// Shu J AI: Mike Stilman
// Shu J Controls: Jun Ueda
// Shu J HRI: Andrea Thomaz
//
// Akansel C : Tue 10:30-12:00
// Akansel C AI: Frank Dellaert
// Akansel C Autonomy: Tucker Balch
// Akansel C Mechanics: Harvey Lipkin
//
// Tiffany C : Wed 10:30-12:00
// Tiffany C Controls: Patricio Vela
// Tiffany C N/A 1: N/A 1
// Tiffany C N/A 2: N/A 2
}
/* ************************************************************************* */
void accomodateStudent() {
// super-hack! just count...
bool debug = false;
// SETDEBUG("DiscreteConditional::COUNT",true);
SETDEBUG("DiscreteConditional::DiscreteConditional", debug); // progress
Scheduler scheduler = largeExample(0);
// scheduler.addStudent("Victor E", "Autonomy", "HRI", "AI",
// "Henrik Christensen");
scheduler.addStudent("Carlos N", "Perception", "AI", "Autonomy",
"Henrik Christensen");
scheduler.print("scheduler");
// rule out all occupied slots
vector<size_t> slots;
slots += 16, 17, 11, 2, 0, 5, 9, 14;
vector<double> slotsAvailable(scheduler.nrTimeSlots(), 1.0);
for(size_t s: slots)
slotsAvailable[s] = 0;
scheduler.setSlotsAvailable(slotsAvailable);
// BUILD THE GRAPH !
scheduler.buildGraph(1);
// Do EXACT INFERENCE
DiscreteBayesNet::shared_ptr chordal = scheduler.eliminate();
// find root node
DiscreteConditional::shared_ptr root = chordal->back();
if (debug)
root->print(""/*scheduler.studentName(s)*/);
// GTSAM_PRINT(*chordal);
// solve root node only
size_t bestSlot = root->argmax();
// get corresponding count
DiscreteKey dkey = scheduler.studentKey(0);
DiscreteValues values;
values[dkey.first] = bestSlot;
size_t count = (*root)(values);
cout << boost::format("%s = %d (%d), count = %d") % scheduler.studentName(0)
% scheduler.slotName(bestSlot) % bestSlot % count << endl;
// sample schedules
for (size_t n = 0; n < 10; n++) {
auto sample0 = chordal->sample();
scheduler.printAssignment(sample0);
}
}
/* ************************************************************************* */
int main() {
runLargeExample();
solveStaged(3);
// sampleSolutions();
// accomodateStudent();
return 0;
}
/* ************************************************************************* */