88 lines
2.7 KiB
Matlab
88 lines
2.7 KiB
Matlab
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
% GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
% Atlanta, Georgia 30332-0415
|
|
% All Rights Reserved
|
|
% Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
%
|
|
% See LICENSE for the license information
|
|
%
|
|
% @brief A simple visual SLAM example for structure from motion
|
|
% @author Duy-Nguyen Ta
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
%% Create a triangle target, just 3 points on a plane
|
|
r = 10;
|
|
points = {};
|
|
for j=1:3
|
|
theta = (j-1)*2*pi/3;
|
|
points{j} = gtsamPoint3([r*cos(theta), r*sin(theta), 0]');
|
|
end
|
|
|
|
%% Create camera cameras on a circle around the triangle
|
|
nCameras = 6;
|
|
height = 10;
|
|
r = 30;
|
|
cameras = {};
|
|
K = gtsamCal3_S2(500,500,0,640/2,480/2);
|
|
for i=1:nCameras
|
|
theta = (i-1)*2*pi/nCameras;
|
|
t = gtsamPoint3([r*cos(theta), r*sin(theta), height]');
|
|
cameras{i} = gtsamSimpleCamera_lookat(t, gtsamPoint3, gtsamPoint3([0,0,1]'), K)
|
|
end
|
|
|
|
%% Create the graph (defined in visualSLAM.h, derived from NonlinearFactorGraph)
|
|
graph = visualSLAMGraph;
|
|
|
|
%% Add factors for all measurements
|
|
measurementNoiseSigma=1; % in pixels
|
|
measurementNoise = gtsamSharedNoiseModel_Sigma(2,measurementNoiseSigma);
|
|
for i=1:nCameras
|
|
for j=1:3
|
|
zij = cameras{i}.project(points{j}); % you can add noise here if desired
|
|
graph.addMeasurement(zij, measurementNoise, symbol('x',i), symbol('l',j), K);
|
|
end
|
|
end
|
|
|
|
%% Add Gaussian priors for 3 points to constrain the system
|
|
pointPriorNoise = gtsamSharedNoiseModel_Sigma(3,0.1);
|
|
for j=1:3
|
|
graph.addPointPrior(symbol('l',j), points{j}, pointPriorNoise);
|
|
end
|
|
|
|
%% Print the graph
|
|
graph.print(sprintf('\nFactor graph:\n'));
|
|
|
|
%% Initialize to noisy cameras and points
|
|
initialEstimate = visualSLAMValues;
|
|
for i=1:size(cameras,2)
|
|
initialEstimate.insertPose(symbol('x',i), cameras{i}.pose);
|
|
end
|
|
for j=1:size(points,2)
|
|
initialEstimate.insertPoint(symbol('l',j), points{j});
|
|
end
|
|
initialEstimate.print(sprintf('\nInitial estimate:\n '));
|
|
|
|
%% Optimize using Levenberg-Marquardt optimization with an ordering from colamd
|
|
result = graph.optimize(initialEstimate);
|
|
result.print(sprintf('\nFinal result:\n '));
|
|
|
|
%% Plot results with covariance ellipses
|
|
marginals = graph.marginals(result);
|
|
figure(1);clf
|
|
hold on;
|
|
for j=1:size(points,2)
|
|
P = marginals.marginalCovariance(symbol('l',j));
|
|
point_j = result.point(symbol('l',j));
|
|
plot3(point_j.x, point_j.y, point_j.z,'marker','o');
|
|
covarianceEllipse3D([point_j.x;point_j.y;point_j.z],P);
|
|
end
|
|
|
|
for i=1:size(cameras,2)
|
|
P = marginals.marginalCovariance(symbol('x',i))
|
|
pose_i = result.pose(symbol('x',i))
|
|
plotPose3(pose_i,P,10);
|
|
end
|
|
axis([-20 20 -20 20 -1 15]);
|
|
axis equal
|
|
view(-37,40)
|